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A new scheme is proposed for dealing with the problem of singularities in General
Relativity. The proposal is, however, much more general than this. It can be used to deal
with manifolds of any dimension which are endowed with nothing more than an affine
connection, and requires a family C of curves satisfying a bounded parameter property
to be specified at the outset. All affinely parametrised geodesics are usually included in
this family, but different choices of family C will in general lead to different singularity
structures. Our key notion is the abstract boundary or a-boundary of a manifold, which
is defined for any manifold M and is independent of both the affine connection and the
chosen family C of curves. The a-boundary is made up of equivalence classes of boundary
points of M in all possible open embeddings. It is shown that for a pseudo-Riemannian
manifold (M, g) with a specified family C of curves, the abstract boundary points can
then be split up into four main categories—regular, points at infinity, unapproachable
points and singularities. Precise definitions are also provided for the notions of a removable
singularity and a directional singularity. The pseudo-Riemannian manifold will be said to
be singularity-free if its abstract boundary contains no singularities. The scheme passes a
number of tests required of any theory of singularities. For instance, it is shown that all
compact manifolds are singularity-free, irrespective of the metric and chosen family C. All
geodesically complete pseudo-Riemannian manifolds are also singularity-free if the family
C simply consists of all affinely parametrised geodesics. Furthermore, if any closed region is
excised from a singularity-free manifold then the resulting manifold is still singularity-free.
Numerous examples are given throughout the text. Problematic cases posed by Geroch
and Misner are discussed in the context of the g-boundary and are shown to be readily
accommodated.
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1. Introduction

In general relativity one often wishes to know whether a particular solution of
Einstein’s field equations is singular or not. Such a seemingly simple question
has frequently been the cause of a great deal of confusion. The most common
problem is that a solution usually comes packaged in one of two ways. Either
it is embedded in a larger four-dimensional manifold (e.g. the Schwarzschild
solution r > 2m) or no embedding is given at all (e.g. Minkowski space in its
usual coordinates). In the latter case there is no edge to the space~time, making
it difficult to assess where any singular behaviour might occur. In the former case
the metric may look singular with respect to the particular embedding given, but
may not look singular at all with respect to another embedding (e.g. Kruskal’s
embedding for the Schwarzschild solution [11]).

Historically there have been several approaches to this problem. Starting with
the work of G. Szekeres [19], who was probably the first to discuss the impor-
tance of geodesic completeness, the next decade saw several attempts to provide
explicit boundary constructions for space-times. The most important of these
were Geroch’s g-boundary [6], the causal or c-boundary of Geroch, Kronheimer
and Penrose [8] and Schmidt’s b-boundary [13]. Excellent reviews of the situ-
ation, up till about 1977, can be found in refs. [9,17,4,2]. Since that time there
has been little advancement in this field.

Each of the constructions mentioned above, however, suffers from various
problems and limitations, perhaps the worst being the difficulty of applying them
to specific examples. For instance, the Schmidt construction involves studying
the 20-dimensional bundle of frames for the given manifold, a daunting task to
say the least. In the few cases where it has been possible to compute the boundary
explicitly (in particular the two-dimensional Friedmann model) the results have
not been encouraging from the physical point of view [1].

Our approach is motivated by a number of considerations. Firstly, we want
a definition of “singularity” which can be used in a reasonably straightforward
way on the sorts of examples that commonly arise in general relativity. Secondly,
in these examples, one often has an intuitive or physical feeling for the structure
of the singularity in question. For example, the singularity at » = O in the
Schwarzschild solution seems to be a spacelike hypersurface, while the studies
of the Curzon singularity interpret it as being generated by the world lines of
points on an infinitely large ring [20,15,16]. Our aim is to see if these intuitive
notions can be grounded in a more rigorous mathematical procedure.

Thirdly, we feel that too much has been made of the differences between the
positive definite case (Riemannian) and the space-time case (Lorentzian). The
former, it is true, does have a well posed theory of singularities via the Cauchy
completion [9,10], but once the door is opened to more general metrics 1t is
hard to see why one would want to restrict attention to the case of Lorentzian
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signature. Indeed, as attention is focussed almost exclusively on the behaviour
of the geodesics, there should be a theory of singularities which needs nothing
more than an affine connection. A satisfactory singularity theory of this kind
could then accommodate other interesting theories such as Einstein—Cartan,
Kaluza-Klein, Yang-Mills, etc.

Within general relativity many discussions concentrate only on timelike or
causal geodesics, as though spacelike geodesics were of no physical consequence.
This seems to be a very shortsighted point of view. In two dimensions, for
example, it is purely a matter of interpretation as to which dimension is taken as
“space” and which as “time”. Also if the curvature becomes infinite at some point
which cannot be approached by causal geodesics but which can be approached by
spacelike geodesics (this nearly happens in the Reissner—Nordstrom solution),
then surely the space-time should not be called “singularity-free”, since there is
an obstruction to continuing certain geometrically important curves.

The key to singularity theory is the concept of an extension of a manifold.
Suppose one is given a “boundary point” p of a manifold, arising for example
on the boundary of a coordinate patch used in the presentation of a space-time
(M, g). If M is continued through p by making it part of a larger manifold Min
which p is covered by a new coordinate patch and the metric extends to a metric
gon ﬁ/t\, then p is clearly a regular boundary point. If no such extension exists,
however, a further possibility presents itself—it may be a “point at infinity”,
unattainable by any geodesics with finite affine parameter. If neither of these
conditions apply, i.e., p is approachable by geodesics with finite affine parameter
yet no extension of M exists through p, then we have what we would term a
“singularity”.

This all needs to be made more precise, but basically singularities can be
thought of simply as “failed” boundary points of open embeddings of a space-
time (M, g)—i.e. points which are neither regular nor points at infinity. For
some people this may seem too narrow a concept, since our boundary points
always belong to open embeddings. We believe this to be an adequate constraint
however. Certainly regular boundary points are always of this type and so it is
natural to classify as “singular” all such boundary points which are not regular.
In this sense points at infinity are also singular, but we will discard them as being
“infinitely far away”.

Our procedure will be to provide a series of precise definitions leading up to
the concept of singularity. Many of the terms defined will be appearing for the
first time or may have appeared earlier in a different context. We have tried to
choose words which are as suggestive as possible of their meaning and liberally
sprinkle the text with examples which should clarify the need for the various
stratagems adopted in our definitions. Most theorems have short proofs and
are needed only to proceed to the next stage of the definitional ladder, leading
eventually to the concept of a singularity.
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While space-times are clearly our main objective, more general pseudo-
Riemannian manifolds, or even manifolds with just an affine connection will
fall under our scheme. Thus from the outset we try to define classes of curves
which are “geodesic-like” on a manifold. This is done in section 2. Classes of
curves whose parameters have a property similar to that possessed by affinely
parametrised geodesics will be said to have the bounded parameter property
(b.p.p. for short). This notion is what will ultimately be needed to test whether
a boundary point is “at infinity” or not. Without such a class of curves sin-
gularity theory has no meaning, since boundary points can always be “sent to
infinity” by an appropriate change of parameter. Our scheme however is very
general and permits discussion of singularities with respect to many different
classes of curves such as causal geodesics, smooth curves with generalised affine
parameter, etc.

Central to our discussion is the notion of an open embedding, i.e. an embed-
ding ¢ of a manifold M in another manifold M of the same dimension. It is
used so often in this paper that we prefer to give it the special name envelop-
ment. Section 3 introduces the idea of boundary points of an envelopment and
develops the key concept of one boundary point covering another one (these be-
longing, in general, to different envelopments). Basically p covers g if whenever
one approaches g (from within AM) then one approaches p. In a sense this says
that ¢ can be thought of as being a “part of” p. Boundary points are then said to
be equivalent if they mutually cover each other, the equivalence classes defined
by this relation being called abstract boundary points.

In section 4 the special case of pseudo-Riemannian manifolds (any signature
metric) is discussed. There is nothing in this section which could not be gener-
alised to manifolds having just an affine connection. The concept of an exten-
sion of a pseudo-Riemannian manifold and, successively, the concepts of regular
boundary points, points at infinity and singularities are discussed. We define rig-
orously what it means for a point at infinity or a singularity to be removable or
essential. The latter concept is shown to pass to the abstract boundary.

In section 5 a complete classification of boundary points and the abstract
boundary is given, including all possible ways in which different types of bound-
ary points can cover each other.

Section 6 is devoted to the problem of singularities. In particular, it is clearly
stated what it means for a pseudo-Riemannian manifold to be singularity-free.
Several theorems are derived, giving criteria for a manifold to be singularity-free.
Geroch’s and Misner’s problematic examples are both discussed and shown to
have unequivocal interpretations in our scheme.

In section 7 we summarise the situation and focus on a number of unanswered
problems arising out of this paper.

A preliminary version of these ideas has been presented by one of us (S.M.S.)
[14]. Some concepts were not optimally developed at that stage and the present
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version should be regarded as superseding the one given there. It is, however, a
useful source of further examples to illustrate our techniques.

2. Parametrised curves

In the following definitions we will always assume that M, M, M, etc. refer to
paracompact, connected, Hausdorff, C*°-manifolds all having the same dimen-
sion n. Unless specifically stated otherwise, it is not assumed in this section or
in section 3 which follows that the manifold is endowed with a metric or affine
connection.

Definition 1. By a (parametrised) curve in a manifold M we shall mean a C! map
y : I —- M where I is a half-open interval [a, ), a < b < co, whose tangent
vector y nowhere vanishes on this interval. Such a curve will be said to start from
p = y{(a), and the parameter will be said to be bounded if b < co, unbounded if
b = .

Definition 2. A curve y' : [a’,b') — M is a subcurve of yifa < a’ < b’ < b and
?" = ?|a ), 1-€., ¥’ s the restriction of y to a subinterval. If a = @’ and b > b’
then we say y is an extension of y'.

Definition 3. A change of parameter is a monotone increasing C! function
s:la,by — [a,b') =T

such that s(a) = a/,s(b) = b’ and ds/dt > O for t € [a,b). We say the
parametrised curve y' : I' — M is obtained from y by the change of parameter s
if

Yos=7.

Definition 4. Let C be a family of parametrised curves in M such that

(1) for any point p € M there is at least one curve y of the family passing
through p,

(i1) if y is a curve of the family then so is every subcurve of y, and

(ii1) for any pair of curves y and ' in € which are obtained from each other
by a change of parameter we have either that the parameter on both curves is
bounded or it is unbounded on both curves.
Any family C satisfying conditions (i), (ii) and (iii) will be said to have the
bounded parameter property (b.p.p.).

Examples 5. The following families of curves all have the b.p.p.
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(1) Geodesics with affine parameter in a manifold M with affine connection.
A change of parameter must have the form s = At + B and the bounded pa-
rameter property is clearly satisfied. We denote this family by C, (M). The term
“geodesic” here always refers to a geodesic arc starting from some point p € M.

(ii) C! curves with generalised affine parameter [9] in a manifold M having
affine connection. This family will be denoted Cgap (M ).

(iii) Timelike geodesics with proper time parameter in a Lorentzian manifold
M, denoted Cg(AM). If the manifold is time-orientable one can also talk of
future-directed and past-directed timelike geodesics, Cg4 (M) and Cg— (M).

Definition 6. We say p € M is a limit point of a curve y : [a,b) — M if there
exists an increasing infinite sequence of real numbers ¢; — b such that y(¢;) — p.

An equivalent statement of this definition is to say that for every subcurve
" = 7|(ap) of ¥, where a < a’ < b, ' (1) enters every open neighbourhood U/ of
D.

Definition 7. We say p is an endpoint of the curve y if y(¢) — p ast — b.
For Hausdorff manifolds this implies that p is the unique limit point of 7.

Definition 8. Given a manifold M with a family C of curves having the b.p.p., we
say the manifold M is C-complete if every curve y € C with bounded parameter
has an endpoint in M.

Of course this does not guarantee that every curve of the family C with bounded
parameter has an extension to a curve in C. However, the converse is true, since by
continuity, every curve y : [a,b) — M which has an extension ' : [a, b)) — M
(0" > b), where y'|[44) = 7, clearly has p = y'(b) as its endpoint.

In most practical cases such as families of geodesics with affine parameter, ex-
tendability of all curves with bounded parameter and C-completeness are equiv-
alent.

3. Enveloped manifolds and boundaries

Definition 9. An enveloped manifold is a triple (M, M, ¢) where M and M are
differentia/\ble manifolds of the same dimension # and ¢ is a C*° embedding
¢ M— M.

Since both manifolds have the same dimension n, ¢ (M) is an open subman-
ifold of M. M is often identified with ¢ (M) in the natural way, when there
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Fig. 1. The manifold M lies below the curve y = sin(1/x) and to the right of the y-axis. Points
of the boundary set B are not the endpoints of any curves on M.

is no risk of ambiguitL The enleloped manifold will also be referred to as an
envelopment of M by M, and M will be called the enveloping manifold.

Definition 10. A boundary point p of an envelopment (M, M, ¢) is a point in
the topological boundary of ¢ (M), i.e. a point p belogging to d(¢(M)) =
(M) — ¢p(M) where ¢p{M) is the closure of (M) in M.

The characteristic feature of such a boundary point is that every open neigh-
bourhood of it (in M) has non-empty intersection with ¢ (M).

Definition 11. A boundary set B is a non-empty set of such boundary points (for
a fixed envelopment), i.c. a non-empty subset of 9 (¢ (M)).

Definition 12. We shall say that a parametrised curve y : I — M approaches the
boundary set B if the curve ¢ o y has a limit point lying in B.

Example 13. It is quite possible to have a boundary point which is not the
endpoint of any curve in M. For instance, let M be the open submanifold
of R? defined by {(x,y);y < sin(1/x), x > 0} and let B be the boundary
set {(0,y); —1 < y < 1}. All points of B are limit points of the curve y =
sin(1/x) — x, x > 0, but none of these points is the endpoint of any curve on
M (see fig. 1).

Definition 14.If B’ is a boundary set of a second envelopment (M,/\/ZL,\ ¢') of
M then we say B covers B’ if for every open neighbourhood I/ of B in M there
exists an open neighbourhood I’ of B’ in M’ such that

podt WUNFM))CU. (1)
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Fig. 2. The set B covers the set B’.

The situation is as depicted in fig. 2. In effect condition (1) says that one
cannot get close to points of B’ by a sequence of points from within M without
at the same time approaching some point of B (see theorem 19 for a more precise
statement of this).

If p’ is a boundary point of the envelopment (M,ﬁ’,cﬁ’) we shall say the
boundary set B covers (respectively is covered by) p’ to mean B covers (is
covered by) the singleton boundary set {p’}. Clearly if p is a boundary point
lying in the boundary set B then B covers p. It is also possible, however, for
a single boundary point to cover a much larger boundary set, as the following
example demonstrates.

Example 15. Let M = R" = R" — {0} and ¢ = id : M — R” be the trivial
envelopment. Let ¢’ : M — R” be defined by
(r+1)

¢I('xla-'~>xn) = :’,__ (-xl:---axn)s

where r = (3__,x?)!/2. The origin O is a boundary point of ¢ and covers the
entire boundary set S"~1(0, 1) [the unit sphere centre O] of ¢'.

Theorem 16. A boundary set B covers a boundary set B' if and only if it covers
every boundary point p’ € B’.

Proof. The “only if” direction is trivial. To prove the “if” direction suppose B
covers every point p’ € B’. Let U be any open neighbourhood of B in M. For
each p’ € B’ letU,, be an open neighbourhood of p’ in M’ such that pog'! (Up N
¢'(M)) cU. ThesetU’ = Up’EB’ U, is clearly an open neighbourhood of B’ in

M satisfying (1), hence B covers B'. O

It is commonly of great interest to compare the approach to two boundary
sets along curves in the manifold M. In this regard the following theorem is very
useful.
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Theorem 17. If a boundary set B covers a boundary set B' then every curve y in
M which approaches B’ also approaches B.

Proof. Suppose B covers B’. Let y : [a,b) — M be a curve which approaches B’
andlet p’ € B’ be alimit point of ¢’oy. Suppose y does not approach B. Lett; — b
be an increasing infinite sequence of real numbers such that ¢’ oy (¢;) — p’, and
set 4 = {¢poy(4);i € N}. ThenU = M-—"Aisan open neighbourhggd of B and
since B covers B’, there exists an open neighbourhood I’ of B’ in M’ satisfying
condition (1). As &’ is also an open neighbourhood of p’ there exists an n such
that ¢/ o y(;) e U’ forall i > n. Clearly ¢ o y(t;) = po ¢~ Lo ¢ o y(t;) €U
for i > n, which contradicts ANU = @. Hence y must have a limit point in B.(]

It is worth pointing out that the converse to this theorem definitely does not
hold. For instance, in example 13 let p = (0,—1/2) and p’ = (0,1/2). Any
curve in M approaching p’ must also approach p. {p} does not cover {p’}, how-
ever, since these two points clearly have non-intersecting open neighbourhoods ¢/
and U/’ and as ¢ = ¢’ = id in this example, condition (1) reducestod' "M C U
(see fig. 1). The following is probably the best that can be said in this respect.

Theorem 18. If every curve in M which approaches a boundary set B’ also ap-
proaches a boundary set B, and if every neighbourhood of B in M contains an
open neighbourhood U of B whose complement in ¢(M) is connected, then B
covers B’.

Proof. Suppose that all curves y in M which approach B’ also approach B, but
assume that B does not cover B’. Then by theorem 16 there exists a p’ € B’
such that B does not cover p’. Hence there exists an open neighbourhood U
of B in M such that for every open neighbourhood U’ of p’ in M the set
pod'~1(U'N¢’ (M)) contains points not belonging to I4. By our hypothesis there
is no loss of generality in assuming ¢ (M) — U to be a connected set. Now by
paracompactness we can always make the manifold M’ into a metric space (e.g.
by imposing a Riemannian metric on M’ and defining d (x, y) to be the shortest
distance for all curves connecting x and y). LetU;, = {¢’ € M:d(p',q") < 1/n}.
For each n select a point p, € ¢po¢'~! (U, N¢’' (M)) such that it does not lie in .
Let y be a curve connecting p; to p2 to p; to ... and lying entirely in ¢ (M) — U.
This curve can clearly be made C! and does not have any limit points in B. It
certainly does have p’ as a limit point, however, since ¢’ o ¢~ (p,) is a sequence
of points approaching p’. We therefore have a contradiction and B must cover

B O

Whilst theorems 17 and 18 represent the best we can achieve in terms of ap-
proaches along parametrised curves in M, a simpler result holds if one only re-



232 S.M. Scott and P. Szekeres / The abstract boundary

quires approaches by sequences of points in M. The following theorem is proved
by methods essentially following those of theorems 17 and 18. We therefore omit
the proof.

Theorem 19. B covers B’ if and only if for every sequence pi, ps, ... of points in
M such that the sequence ¢' (p;) has a limit point in B’, the sequence ¢{p;) has
a limit point in B.

Covering is a weak partial order on boundary sets:
(i) B covers B.
(11) If B covers B’ and B’ covers B” then B covers B”.

Definition 20. We say boundary sets B and B’ are equivalent if B covers B’ and
B’ covers B.

This is clearly an equivalence relation on the set of all boundary sets.

Definition 21. An abstract boundary set is an equivalence class of boundary sets,
denoted [B].

The covering relation passes to abstract boundary sets in the natural way; we
say [B] covers [B'] if and only if B covers B’. This relation is clearly indepen-
dent of the choice of representatives. For abstract boundary sets, however, the
covering relation is a true partial order as it satisfies the further antisymmetric
condition:

(iii) If [B] covers [B’] and [B’] covers [B] then [B] = [B’].

One might be tempted at this stage to define “abstract boundary points” as
minimal abstract boundary sets, but any such attempt using an argument based
on Zorn’s lemma is doomed to failure. Any single boundary point p can always
be blown up to a much larger boundary set in a similar way to example 15. This
is done by defining a new envelopment with the property that different curves in
M which originally all had p as their endpoints now approach separate endpoints
(e.g., see ref. [6]). Despite this problem we shall make the following definition
of an abstract boundary point.

Definition 22 (The Abstract Boundary). For a manifold M, an abstract bound-
ary set is an abstract boundary point whenever it has a singleton {p} as a repre-
sentative boundary set. In this case the equivalence class is denoted by [p]. The
set of all abstract boundary points will be denoted B(AM) and called the abstract
boundary or a-boundary of M.
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It is to be stressed here that the abstract boundary is defined for every manifold
M, irrespective of the existence of further structure on the manifold such as a
metric, affine connection or chosen family C of curves.

It must be realised, however, that an abstract boundary point [p] is no more
“pointlike” than a more general abstract boundary set [B]. The equivalence
class [p] need not even consist only of connected boundary sets. For example if
one embeds the open interval M = (0, 1) in the natural way in the real line and
then embeds it in the unit circle (using angular coordinate 6) with the map 8 =
¢(t) = 2mt, then clearly the single boundary point & = 0 of the envelopment
(M, S, ¢) is equivalent to the disconnected boundary set {t = 0,7 = 1} of the
first embedding.

It is not hard to show that every boundary set belonging to the equivalence
class of an abstract boundary point [p] must be a compact set, but whether this
is a necessary and sufficient condition is difficult to resolve.

For the remainder of this section it will be assumed that a family C of curves
with the b.p.p. has been chosen for the manifold M and this will be denoted by
(M,C).

Definition 23. If (M, M, ¢) is an envelopment of (M,C) by M, then we say a
boundary point p of this envelopment is a C-boundary point or approachable if it
is a limit point of some curve from the family C (in other words, if some curve
of the family approaches p). Boundary points which are not C-boundary points
will be called unapproachable.

If a boundary point p covers another boundary point p’ and p’ is a C-boundary
point, then it is clear by theorem 17 that so is p, since any curve which approaches
p' must also approach p. This leads naturally to the following definition.

Definition 24. An abstract boundary point [p] is an abstract C-boundary point, or
simply approachable, if p is a C-boundary point. Similarly, an abstract boundary
point [p] is unapproachable if p is not a C-boundary point.

This definition is clearly independent of the choice of representative boundary
point p. We denote the set of abstract C-boundary points of M by B¢ (M ). Note
how properties such as being approachable only have to be preserved one way
under covering in order to pass to the abstract boundary. For example, the
converse of the statement just prior to definition 24 is certainly not true—C-
boundary points may cover unapproachable boundary points, as the following
example demonstrates.

Example 25. Consider the manifold M = {(x,y) € R}, —00 < x < o0, 0 <
y < oo} with the metric ds> = y2dx? + dy? (this is the covering space of
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the cone [4], or the Riemann surface of log(z)). We set ¢ = Cg(M), the
family of affinely parametrised geodesics on M. Let ¢ : M — R? be the trivial
envelopment defined by ¢ (x,y) = (x,y). Every boundary pointon y = O isa
C-boundary point, since it is the endpoint of a vertical geodesic x = constant.
Furthermore, these are the only geodesics which approach the boundary y = 0,
since the general geodesic is given by y = asec(x — xp),a > 0, |x — xg| < n/2.
A second envelopment ¢’ : M — R? defined by

(x,y") = ¢ (x,y) = (X/y,\/x2 +y2)

again maps M onto the region 3’ > 0 of R2. It has the effect of spreading out
the vertical geodesics x = a # 0 so that they approach ' = |a| as x’ — *oc.
Thus on the boundary y’ = 0 only the origin (0,0) is a C-boundary point, all
others (x' # 0,y’ = 0) being unapproachable. It is also easily seen that all these
unapproachable boundary points are covered by the C-boundary point (0,0) of
the original envelopment ¢.

4. Pseudo-Riemannian manifolds

4.1. EXTENSIONS

We now introduce a metric on M. In order to establish conventions, we first
give a standard definition.

Definition 26. A C* metric g on M is a second rank covariant symmetric and
non-degenerate C* tensor field on M. The pair (M, g) is called a C* pseudo-
Riemannian manifold. When g is positive definite it is called Riemannian.

Our discussion will refer to metrics of any signature unless specifically stated
otherwise. An envelopment of a pseudo-Riemannian manifold will be denoted
(M, g, M, ®). The metric (¢~')*g induced on the open submanifold ¢ (M) of
M by the C*° embedding ¢ will also be denoted by g when there is no risk of
ambiguity.

Definition 27. A C! extension (1 < [ < k) of a C¥ pseudo-Riemannian manifold
(M, g) is an envelopment of it by a C! pseudo-Riemannian manifold (M\, g)
such that

gloim) = &
denoted (M, g, M, g,$). When / = k, we talk simply of (M, &) being an ex-
tension of (M, g).

We note that this definition of an extension of a pseudo-Riemannian manifold
(M, g) can be applied in a precisely analogous manner to a manifold M simply
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endowed with a C* affine connection V, denoted (M, V). Furthermore, this will
also be true for all definitions to follow. It is important to keep this in mind, since
it means that our scheme can be applied to a wide class of theories including
conformal, projective and gauge theories.

4.2. REGULAR BOUNDARY POINTS

Definition 28. We say a boundary point p of an envelopment (M, g, M ,$)is C!
regular for g if there existsa C ! pseudo-Riemannian manifold (M, g) such that
p(M)U{p} CMC Mand (M, g, M, g,) is a C! extension of (M, g).

Note that we require the same mapping ¢ for the extension as for the original
envelopment (although strictly speaking, since the target set M is different to the
target set M of ¢, it should be given a new name ¢ defined by the requirement
that ¢(g) = ¢(q) for all g € M).

A C* regular boundary point will simply be calied regular. Although there is
no serious loss of generality in using this term (since if / < k we may simply
regard (M, g) as being a C' pseudo-Riemannian manifold), we shall persist
in our terminology because the distinction does become important for singular
boundary points.

The notion of regularity cannot, however, be transferred to the abstract bound-
ary as it stands, since it is not invariant under equivalence of boundary points.
The following simple example clearly demonstrates this fact.

Example 29. Embed the one-dimensional manifold M = (0,1) with metric
ds? = dx? into the manifold R in two ways: y = ¢(x) = x and z = ¢/ (x) =
x1/2, The boundary points y = 0and z = 0 are clearly equivalent by our earlier
definitions, but the first is C* regular while the second is not C! regular for any
[ > 1. This follows because the metric induced by the second embedding,

dSZ = 422 de,

is degenerate at z = 0 and cannot therefore be extended to any open interval
(—a, 1), where a > 0. Thus the abstract boundary point in question has at least
two representative boundary points, one of which is regular while the other is
not.

The notions of an extension of a pseudo-Riemannian manifold (M, g) and
a regular boundary point of an envelopment (M, g, /(/1\, ¢) are both completely
independent of whether or not a family C of curves with the b.p.p. has been cho-
sen for M. This will not be true for the notions which follow, such as a “point at
infinity” and a “singular boundary point”. Therefore we shall henceforth always
assume that our pseudo-Riemannian manifold is endowed with a family C of
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curves with the b.p.p. which normally (i.e. unless otherwise specified) includes
the family of all geodesics with affine parameter C (M ). The general situation
will be denoted (M, g,C) while the usual notation (M, g) will be reserved for
the case where C = C,(M). An envelopment of a pseudo-Riemannian manifold
with a family of curves satisfying the b.p.p. will be denoted (M, g,C, M ,0).

The following example shows that regular boundary points can even be unap-
proachable by geodesics in M.

Example 30. Let M be the open submanifold of R? defined by y > xV/2,x > 0
and let g be the usual flat metric ds? = dx? + dy?. The boundary point (0,0) is
C> regular since the metric extends to all of R?, yet it is clearly unapproachable
by any geodesics (straight lines) in M.

4.3. POINTS AT INFINITY

The non-regular boundary points can be broken up into two groups, those
which are C-boundary points, also called approachable, and the rest which are un-
approachable. Although we have seen examples of regular boundary points which
are unapproachable (example 30), the non-regular unapproachable boundary
points do not seem to merit serious further discussion. This is because they usu-
ally occur when we blow up a region of a boundary by spreading out a family of
approaching curves too thinly (e.g. example 25).

The approachable non-regular boundary points do, however, have a very rich
structure. First one must ask of them whether one can effectively ever “get there”
along a curve in C with a finite value of the parameter or not. To this end we
introduce the concept of a point at infinity.

Definition 31. Given an (M, g,C) we will say that a boundary point p of the
envelopment (M,g,C,M\,qS) is a C! point at infinity for C if

(i) pis not a C! regular boundary point,

(i1) p is a C-boundary point, and

(iii) no curve of C approaches p with bounded parameter.

Condition (iii) says that for no interval / = [a,b < oo) is there a curve
y : I — M in the family € and an increasing infinite sequence of real numbers
{¢;} in I such that
é(yt;))—p asti—b.
Clearly a C’ point at infinity is also a C!’ point at infinity for all // > /. In
particular, it is always a C¥ point at infinity and there is no real loss of generality
in simply calling it a point at infinity.
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Note that by the bounded parameter property, the concept of a point at infinity
is independent of the choice of parametrisation on the curves from ¢ which
approach p. It is here that the importance of imposing the bounded parameter
property on C becomes evident.

Condition (i) ensures that no boundary point is classified as both regular and
a point at infinity. Without it, such boundary points do, in fact, occur as made
clear by the following two examples.

Example 32. In example 30 let C consist of all the geodesics in M supplemented
with the curves x(t) = 1/£2, y(t) = C/t, C > 1,1 <t < co. The boundary
point (0, 0) is still regular (nothing has changed as regards the metric) but it
is “at infinity” for C, since it is approachable only by curves with unbounded
parameter.,

This example is somewhat artificial, in that the added curves, and more par-
ticularly the choice of their parametrisation, seem to have nothing to do with the
metric. A rather more subtle example is the following, in which there is a regular
boundary point which is geodesically approachable, but only by geodesics with
unbounded affine parameter.

Example 33. Let M be the unit torus, i.e. R?/Z2, with the usual flat metric ds? =
dx? + dy2. Let y be the geodesic in M generated by theline x = ¢, y = tv2 (¢ >
0) and let p be the point (3, 1). On the central line L = {(x,1/2); 0 < x < 1}

choose points
1 1 1 .
pil=(§(1i5)5§>a l=1’213>-"~

Foreachi = +1,+£2,... let L; be the closed line segment of length 1/2 and slope
V2 centred on the point p; and let Ly be a similar line segment with centre p.
Now define M as the open submanifold of M consisting of the complement in
M of this infinite set of closed line segments,
M=M-]JL

i€z
(see fig. 3). Clearly p is a boundary point of the envelopment (M,f/t\, idag)
and is C* regular. Now apart from its starting point at (0, 0), the geodesic y
does not pass through any point (x,y) where x and y are both rational and, in
particular, it does not pass through any of the points p; or p on L. It follows that
y lies completely in M. Furthermore, there is an increasing infinite sequence
of positive numbers ¢, — oo such that y(t,) all lie on M N L and such that
y(t,) — p. Thus y approaches p and does so with unbounded affine parameter.
The same is true of every geodesic in M with slope v2 which does not pass
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Fig. 3. An example of a C* regular boundary point which is approachable only by geodesics in
M with infinite affine parameter.

through any of the points p; or p. Moreover these are the only geodesics in M
which approach p. Thus p is C* regular yet it is like a point at infinity with
respect to geodesics in M.

The key thing about these two examples is that regularity always takes prece-
dence over being “at infinity”. Thus even if one can only “reach” the boundary
point along curves from C having unbounded parameter, if it is regular then it
will not be classified as a point at infinity. Suppose, however, that in example 32
one were to perform a “bad” coordinate transformation, e.g., x = x’3,y = 3.
If the manifold M is re-embedded in R? with the new coordinates x’, )’ taken
as rectangular, then the origin definitely does become a point at 1nﬁn1ty, since
conditions (i), (ii) and (iii) of definition 31 are now all satisfied. This point
at infinity is, however, in a sense “artificial” or “removable”, since it is covered
by (indeed equivalent to) the original regular boundary point at the origin. A
similar bad transformation can be applied in a neighbourhood of the boundary
point (2, 2) of example 33, also converting it into a point at infinity.

Definition 34. We define a boundary point which is a point at infinity to be
removable if it can be covered by a boundary set of another embedding consisting
entirely of regular boundary points. When a point at infinity is not removable,
it will be called essential.

In a sense essential points at infinity are boundary points which really do have
a component at infinity (i.e., which cannot be transformed away). Furthermore
the concept of being an essential point at infinity passes to the abstract boundary,
as the following theorem demonstrates.

Theorem 35. If the boundary point p is an essential point at infinity and p is
equivalent to the boundary point p', then p' is also an essential point at infinity.
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Proof. Since p’ covers p, it follows from theorem 17 that it must be a C-boundary
point (since p is a C-boundary point). p’ cannot be regular, else p would be
covered by a regular boundary point, contradicting it being an essential point at
infinity. Now since p also covers p’, p’ cannot be the limit point of any curve
in ¢ with bounded parameter else, by theorem 17, p would not be a point at
infinity. Hence p’ is a point at infinity. Furthermore it is an essential point at
infinity for if B is any boundary set of regular boundary points which covers p’,
then by transitivity of the covering relation this boundary set would also cover
P, again contradicting its essentialness. O

It is interesting to note that an essential point at infinity may itself cover
regular boundary points. For example, if one is given an envelopment of a man-
ifold which has both an unapproachable regular boundary point and an essential
point at infinity, then it is in general a straightforward matter to create a new
envelopment in which these two points are “joined together” to coalesce into a
single new boundary point. This newly created boundary point would also be an
essential point at infinity, but would cover the original regular boundary point.

Definition 36. An essential point at infinity which covers a regular boundary
point will be called a mixed point at infinity. Otherwise it will be termed a pure
point at infinity.

It is easy to see that both these categories are invariant under boundary point
equivalence and therefore pass to the abstract boundary.

4.4. SINGULAR BOUNDARY POINTS

Definition 37. A boundary point p of an envelopment (M, g,C, M ,¢) will be
called C! singular or a C! singularity if

(i) p is not a C! regular boundary point,

(ii) p is a C-boundary point, and

(iii) there exists a curve from ¢ which approaches p with bounded parameter.
Alternatively, one could say p is C! singular if it is a C-boundary point which is
not C! regular and not a C! point at infinity.

Since a boundary point which is not C! regular is clearly not C” regular for
all I' > [ it follows at once that if p is C/ singular then it is C"' singular for all
[’ > I—in particular, it is always C* singular. In general we shall simply say that
p is singular if it is C* singular (i.e., if p is C' singular for some / < k).

Example 38. Consider the metric
ds? = (1 + r)dr* + r2d6% r>0,0<86 < 2x,
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on the manifold M = R? (see example 15). This is the metric induced on the
surface in E> obtained by rotating the curve z = r"*+'/(n + 1) about the z-axis.
The curvature scalar is readily shown to be proportional to r2"=2/(1 + r?")?
which — ccas ¥ — 0 for 0 < »n < 1. In fact for % < n < 1 one finds that the
boundary point 7 = 0 is C! regular but C? singular. Similarly for N < 2n <
N + 1, where n € N, we have that r = 0 is C¥ regular but C¥+! singular.
These results are easily seen by considering M as being embedded in R? with
the usual polar interpretation of the coordinates (r, #) and then transforming to
rectangular coordinates (x, ) ).

Example 39. Consider the metric
ds? =dr? + (r + 1)2df%, O0<r<o, 0<6<2m,

on the manifold M = R2. In this case the boundary point r = 0 is singular
if we use the natural polar embedding of M in R2. It is worth considering this
example in some detail since at first sight the metric shows no pathological
behaviour at the boundary point in question. The coordinates (r,6) do not,
however, constitute a coordinate patch for the manifold R? in a neighbourhood
of r = 0. It is therefore necessary to perform a transformation to “rectangular”
coordinates x = rcosé, y = rsinf, whereupon the metric becomes

1()(dx + ydy)?.

ds® = (dx? + dy?) -

(r+l)
r

It is easy to see that x = y = 0 is not a regular boundary point since each
metric component becomes infinite for almost all directions of approach. It 1is
clearly not a point at infinity since it is approached by geodesics with bounded
parameter, hence it is a singularity. Let us now re-embed M in R? using the ¢’
of example 15. Then ¢’ (M) is the region r > | of R? and again using polar
coordinates on R2, the induced metric on ¢ (M) becomes the standard flat
metric ds? = dr? + r?d62. This can, of course, be extended to all of R? using
rectangular coordinates (x,y). Thus the original singular boundary point r = 0
is equivalent to the boundary set S!(0, 1) which is made up entirely of C>
regular boundary points. Such a singularity will be termed “removable”. We
begin to formalise the message of this example with the following definition.

Definition 40. A boundary set B will be called C! non-singular if none of its
points are C’ singular, i.e., if they are all either C! regular, C’ points at infinity
or unapproachable boundary points. (N.B. As discussed above, the first and last
categories are not mutually exclusive.)

As in example 39 singular boundary points can arise which are equivalent to
C! non-singular boundary sets. Such boundary points should not be classified



S.M. Scott and P. Szekeres / The abstract boundary 241

as “truly” or “essentially” singular and will be called “removable singularities”.
Other examples are the one-dimensional example 29 above and the boundary
points (r = 2m,t = constant) of the Schwarzschild “singularity”, which are
all covered by the C* regular boundary point (¢ = 0,v = 0) of the Kruskal-
Szekeres extension [11,19]. A more precise definition of this concept is now
given.

Definition 41. A C™ singular boundary point p will be called C™ removable if
it can be covered by a C™ non-singular boundary set B. Clearly if p is a C™
removable singularity, then for all m’ < m such that p is C™' singular, it is also
C™ removable. If m = k we say simply that p is a removable singularity.

Definition 42. A C™ singular boundary point p will be called C™ essential if it is
not C™ removable. If p is C™ essential then it is C m' essential for all m’ > m,
whence it is always C* essential and we can describe p simply as an essential
singularity.

Keeping track of all these orders of differentiability is a tedious business and
from now on we will simply use the terms regular, singular, removable, essential,
etc. in most cases. It is usually a straightforward matter to discover corresponding
statements for more general orders of differentiability than k. It is worthwhile
keeping in mind the following easily proved theorem, stating in essence that
singularities can never be removed “to infinity”.

Theorem 43. Let p be a removable singularity and let B be any non-singular
boundary set which covers p. Then B contains at least one regular boundary
point.

Proof. By definition 37, there is a curve y from C which approaches p with
bounded parameter. Since B covers p, y must also approach B (by theorem 17).
Let ¢ € B be any limit point of the curve y. g is clearly a C-boundary point
and since the curve y approaches it with bounded parameter, it is not a point at
infinity. Hence ¢ must be a regular boundary point. O

It is useful to further subclassify essential singularities and to this end we
provide the following definition.

Definition 44. An essential singularity p will be called a mixed or directional
singularity if p covers a boundary point ¢ which is either regular or a point at
infinity. Otherwise, when p covers no such boundary point, we shall call it a
pure singularity.
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These notions seem to encapsulate earlier discussions of “directional singu-
larities” as they appear in the literature, particularly with regard to the Curzon
solution [18,5,3]. Possibly the word “mixed” is better to use in this context
since such a singularity might only cover an unapproachable regular boundary
point, which would hardly make the behaviour dependent on the “direction of
approach”. Nevertheless we will persevere with the more standard terminology
and usually call such singularities directional.

Example 45. Consider the metric
ds? = F2(r)(dr* + r*d6?%), r>0,0<0<2x, F*(r)=1+7r",

defined on the two-dimensional manifold M = R2 When 0 < n < 2 it is seen
that the curvature scalar

n2,.n—2
Tvrms ~
so that the boundary point 7 = 0 of the natural embedding of M in R? is a
C? singularity (it is clearly not a point at infinity). Now transform to elliptical
coordinates (7, ) given by

Ry = — -0 as r— 0,

x
y

In these coordinates the metric becomes

rcosf = coshncosy,

rsind = sinh#xsiny .

ds? = F2(r)(cosh® —cos?y) (dn? + dy?) (0<n<,0<y <2m),

where
r? = cosh®y —sin?y .
In the x~y plane, n = 0 corresponds to the strip —1 < x < | of the x-axis. If
we now perform a transformation to “rectangular” coordinates (X, Y') based on
(n, wv) as “polars”, viz.,
X =ncosy, Y =psiny,

the metric assumes the rather prohibitive form

2 2
ds? = Fn(r) (coshzn — %)

3

x[(PX?+Y2)dX? + (Y% + X3)dY?2 + 2XY (5* - 1)dX dY],

12 =cosh’n—Y3/n?, n=VX2+7Y2
Now suppose that we are presented with this metric in (X, ¥') coordinates, but

without any words of explanation as to its origin. Taking (X, Y) as rectangular
coordinates on the manifold R?, we wish to classify the boundary point (0,0)

where
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Fig. 4. A directional singularity. A curvature singularity exists at the origin of the (x,)) coordinate

system on the left. The origin on the right induced by the use of elliptical coordinates is a directional

singularity, as it covers the whole line segment [—1, 1] of the original x-axis, which consists of
both a singular boundary point and infinitely many regular boundary points.

of R2. From evaluation of the curvature scalar, which must come to the same
along a given curve as in the first embedding, one sees that Ry, — —oo as one
approaches the origin X = Y = 0 (n = 0) along the Y-axis. For any other
direction of approach X = aY (a # 0), however, Ry~ can be shown to have
a finite limit (see fig. 4). Typically this is the cue for a directional singularity.
The way our example has been constructed it is a straightforward matter to see
how the directionality may be unravelled. The boundary point X = Y = 0
is equivalent to the strip —1 < x < 1 of the x-axis (1 = 0) in the original
embedding, which consists of both a C? essentially singular boundary point and
infinitely many C? regular boundary points. It follows that the origin of the
second embedding is a C? directional singularity.

The following theorem implies that the property of being an essential singu-
larity passes to the abstract boundary.

Theorem 46. If a boundary point p of an envelopment (M, g,C, /T/i\, @) covers a
boundary point p' of a second envelopment (M, g,C, M', @' which is essentially
singular, then p is also an essential singularity.

Proof. Theboundary point p is aC-boundary point since it covers the C-boundary
point p’. It is neither regular nor a point at infinity, else p’ would be covered
by the non-singular boundary set {p} and hence would be removable (i.e. not
essential). Furthermore it must be an essential singularity, for if it were covered
by a non-singular boundary set B, then B would also cover p’ by the transitivity
of the covering relation, again contradicting the assumption that p’ is an essential
singularity. Od

5. Classification of boundary peints

Suppose that we are given an envelopment (M, g,C, /(4\, ¢) of a C* pseudo-
Riemannian manifold (M, g,C) and wish to classify a specific boundary point
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p. We proceed by asking a series of questions. Each question is in principle
decidable, though we do not mean to imply by this that the decision is always
easy to carry out. The questions to be decided are:

(1) Is p a C! regular boundary point for some | < k? This is usually a fairly
straightforward thing to decide. If p is regular then there must exist an open
coordinate neighbourhood ¢/ of p in M and a metric which extends gina (!
manner from its restriction to & N M to all of U. If the answer is YES, we
are finished, except for possibly enquiring whether p is approachable (i.e. a C-
boundary point) or not. This latter question is again answerable by investigating
whether p is a limit point of some curve from C.

For convenience, let us assume from now on that / = k (corresponding ques-
tions to be decided for different orders of differentiability are easily posed). If
the answer to question (1) is NO, then we must proceed as follows:

(2) Is p a C-boundary point? If NO, then p is filed away as an unapproachable
non-regular boundary point. These are essentially uninteresting points, though
a further investigation might be carried out to ascertain whether they cover any
(unapproachable) regular boundary points. If YES, then we proceed with the
following questions:

(3) Is there a curve from C which approaches p with bounded parameter? If
NO, then p is a point at infinity, while if YES, then it is a singularity.

- If p is a point at infinity we ask:

(4) Is p covered by a boundary set B of another embedding consisting only
of regular and/or unapproachable boundary points? If YES, then the point at
infinity is called removable, while if NO, then it is called essential. In the latter
case we proceed to ask:

(5) Does p cover a regular boundary point q of another embedding? 1If YES,
then p is a mixed point at infinity, while if NO, then it is a pure point at infinity.
— If p is singular we ask:

(6) Is p covered by a non-singular boundary set B of another embedding? 1f
YES, then it is a removable singularity, while if NO, then it is an essential
singularity and we can ask further:

(7) Does p cover any regular boundary points or points at infinity of other
embeddings? If YES, then it is a directional singularity, while if NO, then itis a
pure singularity.

The whole classification as it emerges from this sequence of questions is dis-
played schematically in fig. 5. Boxes surround concepts which pass to the abstract
boundary.

5.1. COVERING RELATIONS

There are eight principal categories of boundary points. These are the regular
boundary points (approachable and unapproachable regular boundary points
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BOUNDARY POINTS

N

Regular Non-Regular

/N

Approachable Unapproachable

Approachable Unapproachable

N

Point at Infinity Singularity

SN N

Removable Essential Removable | Essential

Mixed Flre Pure

Fig. 5. Schematic classification of boundary points. Boxes surround concepts which are invariant
under boundary point equivalence and therefore pass to the abstract boundary.

being regarded as subcategories); non-regular unapproachable boundary points;
removable, mixed and pure points at infinity; removable, directional (mixed)
and pure singularities. It is of interest to know which of these categories can
or cannot cover each other. In table 1 we put a 4/ if a boundary point of type
corresponding to the row label can cover a boundary point of the type belonging
to the column label (i.e., if an explicit example of such a covering can be found),
while we put a x there if it is impossible. Most of the positions in the table are
easy to fill in, although specific examples of a covering where it is possible can
be a little tricky to find in some cases.

The value of the table is that it allows us to see at once which pairs of categories
can or cannot have representatives which are equivalent to each other. This is
particularly valuable when it comes to analysing the abstract boundary.
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Table 1
Covering table. A / means that a row-labelled boundary point can cover a column-labelled
one, x means this is impossible. The various labels are abbreviations for regular; non-regular
unapproachable; removable, mixed and pure points at infinity; removable, directional and pure

singularities.
reg. non-reg. rem. mix. pure rem. dir. pure
unapp. o0 oc 00 sing. sing. sing.
regular v Vv V4 X X V4 X X
non-reg. unapp. Vv v x x x X x X
remov. pt. oc Vv V4 N4 X x x x x
mixed pt. co Vv Vv Vv N4 N X X X
pure pt. oo X Vv V4 X Vv X X X
remov. sing. Vv V4 Vv N4 N4 v x x
dir. sing. v v 4 v v v v v
pure sing. X v X x X Vv X N4

5.2. CLASSIFICATION OF THE ABSTRACT BOUNDARY

We are now in a position to completely classify the abstract boundary points.
First of all abstract boundary points can be divided into approachable (C-
boundary points) and unapproachable. We essentially discard the latter, al-
though there is an interesting subclass of unapproachable abstract boundary
points which have a regular boundary point representative (example 30). Fo-
cussing attention on approachable boundary points, we have already seen that
the classes which belong to the essential categories, namely mixed and pure
points at infinity and directional and pure singularities, all pass to the abstract
boundary. To see that these are the only categories which pass to the abstract
boundary one makes use of table 1.

A category C passes to the abstract boundary if and only if representative
boundary points from C can never be equivalent to points from another category
C’. This will be true if there is a x in either the CC’ or C'C entry of the table
for every category C’ # C. It is easily verified that the only categories for
which this holds are those mentioned above. The remainder we may simply
term “indeterminate”—these comprise abstract boundary points which have as
members regular boundary points, removable points at infinity and removable
singularities. As a regular boundary point can be equivalent either to a removable
point at infinity or to a removable singularity (but never to both) it is not possible
to create genuine subcategories of the indeterminate abstract boundary points.
In view of all this it is reasonable to make the following definitions.

Definition 47. An abstract boundary point will be termed an abstract point at
infinity if it has a representative boundary point which is an essential point at
infinity.
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ABSTRACT BOUNDARY POINTS

Approachable Unapproachable
Indeterminate . .
Points at Infinity Singularities
regular
removable pts Mixed Pure Directional| Pure
at infinity
removable

singularities

Fig. 6. Classification scheme for abstract boundary points.

Definition 48. An abstract boundary point will be termed an abstract singularity
if it has a representative boundary point which is an essential singularity.

This classification together with the further subclassification into mixed (di-
rectional) and pure classes is depicted in fig. 6. In this way we see that every
pseudo-Riemannian manifold with a class C of curves satisfying the b.p.p. has
a well-defined abstract singular boundary (consisting of the set of all abstract
singularities) and also an abstract infinity. This essentially solves the problem
originally posed by this paper, namely to construct a boundary for an arbitrary
n-dimensional pseudo-Riemannian manifold with class C of curves satisfying
the b.p.p. which represents its singularities. The abstract infinity, representing
the “boundary at infinity”, comes as a bonus.

6. Singularities of pseudo-Riemannian manifolds

Definition 49. We will say that a pseudo-Riemannian manifold (M, g,C) with
class C of curves satisfying the b.p.p. has a C! singularity if its abstract C’ sin-
gular boundary is non-empty, i.e., if there exists an envelopment of M having
an essentially C’ singular boundary point. Conversely, (M, g,C) will be called
C! singularity-free if it has no C! singularities, i.e., if for every envelopment of
M its boundary points are either C/ non-singular (C' regular boundary points,
C! points at infinity or unapproachable boundary points) or C’ removable sin-
gularities.
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At first sight it might seem a daunting prospect to decide whether a given
(M, g,C) is singularity-free, as it seems that one would have to investigate every
possible envelopment of M and check whether it has any essential singularities
or not. In practice, however, several very general theorems exist to make the task
much simpler. The two which follow are generally regarded as the sine qua non
of any successful theory of singularities [17].

Theorem 50. Every compact pseudo-Riemannian manifold (M, g) is singularity-
free for any family C of curves with the b.p.p.

Proof. A compact manifold has no non-trivial envelopments, for any enveloping
manifold M would contain M as a compact open subset. But M cannot be both
open and closed, since the enveloping manifold M is assumed to be connected.
Since M has no envelopments, its abstract boundary is empty and, in particular,
can contain no singularities. OJ

Theorem 51. Every pseudo-Riemannian manifold with a family C of curves sat-
isfying the b.p.p., (M, g,C), which is C-complete is singularity-free.

Proof. Let (M, g,C,/TA\, ¢) be any envelopment of (M, g,C) and let p be any
C-boundary point of this envelopment. Let y : [a, b) — M be some curve from
C having p as a limit point. The parameter range [a, ») cannot be bounded, else
by C-completeness y would have an endpoint ¢ € M. Since endpoints are unique
limit points and g # p (since p € M), it is clear that this yields a contradiction.
Hence p cannot be a singularity. O

A rather stronger version of this theorem is available when, as is usually re-
quired, C D Cg(M). It implies that not even unapproachable regular boundary
points are possible in this case, which would still have been permitted by theo-
rem S1.

Theorem 52. If the pseudo-Riemannian manifold (M, g) is Cg(M)-complete
then it can have no regular boundary points.

Proof. Let (M, g, X/l\, ¢) be any envelopment of (M, g) and let p be any bound-
ary point of this envelopment. If p is a regular boundary point then it is possible
to find a neighbourhood & of p in M on which a metric £ exists which extends
glunm- There is no loss of generality in assuming that / is a normal neighbour-
hood. Let g € Y N M and y : [a,b] — U be the unique geodesic for the metric
£ connecting g to p. This geodesic clearly intersects M (since ¢ € M) and has
bounded parameter. On the other hand, it must exit M since p &€ M. Let the
first parameter value ¢ € (a, b] for which y(¢) € M be denoted by ¢. Clearly the
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geodesic 7|[4) does not have its endpoint y(c) in M. This contradicts C g (M)-
completeness, whence p cannot be regular. O

Of course it is possible for a pseudo-Riemannian manifold (M, g) to be
C¢ (M )-complete and therefore to be singularity-free, but if the family of curves
is extended to a wider class such as C = Cgap (M), it might no longer be C-
complete. A classic example of this kind has been given by Geroch [7], where
a space-time is geodesically complete but has incomplete curves of bounded
acceleration.

Definition 53. Boundary points arising as limit points of curves from the family
C with bounded parameter in a C, (M )-complete manifold will be referred to as
Geroch points.

Geroch points must be singular (as is clear from theorem 52). In fact they
must be essentially singular, else they would be covered by a boundary set of
another embedding which contains at least one regular boundary point (by the-
orem 43), which is impossible by theorem 52. Thus the existence of Geroch
points implies that the pseudo-Riemannian manifold (M, g,C) has a singular-
ity. Note, however, that if C; (M )-completeness had been taken as one’s goal,
then the manifold would be singularity-free. It is therefore of vital importance
to specify the family C of curves when discussing the question of singularities.

Also with this scheme, geodesic incompleteness does not necessarily imply
that the particular (M, g,C) in question has a singularity. The classic example
of this is the Taub-NUT space-time [9] or Misner’s simplified version [12],
which we present here.

Example 54. Let M be the two-dimensional manifold S! x R!, with Lorentzian
metric
ds? = 2drdy + tdy?, teR,0<y<2x.

The central circle ¢ = 0 and the vertical lines ¥ = constant are complete null
geodesics, but there are other geodesics (null, timelike and spacelike) which ex-
ecute infinite spirals as they approach ¢t = 0 from either above or below (see
fig. 7). These geodesics all approach ¢ = 0 with bounded affine parameter and
thus are either past- or future-incomplete. On the other hand it is clear that there
is no envelopment of this space—time providing boundary points which are limit
points of these incomplete curves (this is seen most readily by compactifying
the space into a torus by identifying t = —oco with ¢ = +o0, for then no en-
velopments exist at all, as was shown in theorem 50). Hence this space-time
is singularity-free but is geodesically incomplete. In many sources [17,4] this
space-time is classified as singular. This interpretation seems to arise in part
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Fig. 7. Misner’s example.

because more than one extension is possible across 1 = 0. Thus an extension of
the lower half-space (¢ < 0) exists in which the spiralling geodesics are complete,
but the vertical ones become incomplete spirals. Undesirable as this sort of be-
haviour may be physically, we do not see it as grounds for calling the space-time
singular. Indeed, there can be other reasons apart from singularities for discard-
ing a metric on physical grounds—for example, the existence of closed causal
curves. These, incidentally, are also present in the Misner space—time.

7. Conclusions

We have presented a new definition of singularities which can be applied
equally well to manifolds of any dimension and metric of any signature. The key
idea has been to define the abstract boundary or a-boundary B(M) of a manifold
M. This is definable for any manifold whatsoever and includes, in a sense, all
possible boundary points which can arise from open embeddings of the manifold.
The a-boundary is constructed entirely from the manifold itself and is therefore
something which every manifold gets gratis. When the manifold is endowed with
extra structure, such as a pseudo-Riemannian metric or an affine connection,
then the approachable boundary points can be classified into three important
categories—regular boundary points, points at infinity and singularities, together
with further subcategories. The key to this classification is the specification of a
family of parametrised curves in the manifold satisfying the bounded parameter
property. This is a vital ingredient, for different such families will give rise to
different singularity structures. It is usual, however, to insist that the family does
include all affinely parametrised geodesics.

The scheme presented is, we believe, very robust and passes most standard
tests required of a theory of singularities. Furthermore, it is a practical scheme,
for when a pseudo-Riemannian manifold such as a space-time is presented, it
is usually given in a specific coordinate system. This often amounts to giving
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an envelopment of the manifold in question. It is normally then a relatively
straightforward matter to classify the boundary points (and, by equivalence,
the abstract boundary points of which they are representatives) arising from
this envelopment. Frequently the information so obtained is sufficient to obtain
an analysis of the g-boundary which at least suffices for answering the main
questions about the singularity structure of the particular pseudo-Riemannian
manifold. Some examples can be found in ref. [14] and others will be given in
a forthcoming paper.

One of the great benefits of our scheme is that when a closed region is ex-
cised from a singularity-free pseudo-Riemannian manifold, the resulting pseudo-
Riemannian manifold is still singularity-free, since only regular boundary points
are introduced by the excision process. It was never possible to make such a claim
with previous schemes because geodesics always had to be maximally extended
before the discussion could begin. As maximal extensions of pseudo-Riemannian
manifolds are not easy to find and are not even unique in the analytic case, we
believe this to be a great advantage of our approach.

Finally, a number of questions remain unanswered in this paper. In particular,
no mention has been made of the topology of the a-boundary, especially its
singular part. This is an important topic, which we propose to discuss in another
paper. It would be of great interest to know how the a-boundary and its topology
relates to the Cauchy completion in the case of a Riemannian manifold. Another
interesting question is the following: does every essential singularity cover a pure
singularity? In other words, is there always a “pure core” to the singular part of
the a-boundary? For any envelopment of a pseudo-Riemannian manifold, is
every boundary point coverable by a boundary set of some embedding, all of
whose boundary points are approachable by geodesics? Does every manifold M
have an envelopment such that its closure M is compact, i.e., does M have a
compactification? Obviously one could go on, but despite the interest of such
questions there is nothing in them to negate the consistency and completeness
of our scheme.

A question of particular interest would be to see how the ga-boundary relates to
other boundary constructions such as the b-boundary or g-boundary. As it stands
it is difficult to see any connection, at least until the further topic of topology on
the boundary is addressed. Our main objective in this paper has been to answer
the question when is a manifold with affine connection and preferred family of
curves singular? The a-boundary seems to be a satisfactory vehicle for dealing
with this question. The criteria we have arrived at are unambiguous and in
many cases can be readily shown to give the expected answer (see ref. [14] for
applications to such examples as Schwarzschild, Friedmann, Curzon, etc.). To
explicitly display the a-boundary of a given manifold, however, is not a feasible
proposition in general, since it amounts to specifying every inequivalent way
in which the manifold can be embedded as an open submanifold of a larger
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manifold. Because of the prevalence of “blow-up” maps, this is clearly not a
practical thing to do. Some method for cutting down or “sectioning” the a-
boundary into manageable sized portions will be needed before structures such
as topology can be attached. We will present procedures for doing this in a
forthcoming publication.
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