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A new schemeis proposedfor dealing with the problem of singularities in General
Relativity. Theproposalis, however,muchmoregeneralthan this. It can beusedto deal
with manifolds of any dimensionwhich are endowedwith nothing more than an affine
connection,and requiresa family C of curves satisfying a boundedparameterproperty
to be specified at the outset.All affinely parametrisedgeodesicsare usually included in
this family, but differentchoicesof family C will in generalleadto different singularity
structures.Ourkey notion is the abstract boundary or a-boundaryof a manifold, which
is defined for any manifoldM andis independentof both the affine connectionandthe
chosenfamily C of curves.The a-boundaryis madeup of equivalenceclassesof boundary
points of M in all possibleopenembeddings.It is shown thatfor a pseudo-Riemannian
manifold (M, g) with a specifiedfamily C of curves, the abstractboundarypoints can
then be split up into four main categories—regular,points at infinity, unapproachable
pointsandsingularities.Precisedefinitionsarealsoprovidedfor thenotionsof a removable
singularity anda directionalsingularity. The pseudo-Riemannianmanifold will besaid to
be singularity-freeif its abstractboundarycontainsno singularities.The schemepassesa
number of tests requiredof any theoryof singularities.For instance,it is shownthatall
compactmanifolds aresingularity-free,irrespectiveof the metric andchosenfamily C. All
geodesicallycompletepseudo-Riemannianmanifolds arealso singularity-freeif the family
C simply consistsof all affinely parametrisedgeodesics.Furthermore,if anyclosedregionis
excisedfrom a singularity-freemanifold thenthe resultingmanifold is still singularity-free.
Numerousexamplesare given throughout the text. Problematiccasesposedby Geroch
andMisner are discussedin the contextof the a-boundaryandare shown to be readily
accommodated.
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1. Introduction

In generalrelativity oneoften wishesto know whetheraparticularsolutionof
Einstein’sfield equationsis singularor not. Sucha seeminglysimplequestion
hasfrequentlybeenthe causeof a greatdeal of confusion.The most common
problemis that a solution usuallycomespackagedin one of two ways. Either
it is embeddedin a larger four-dimensionalmanifold (e.g. the Schwarzschild
solution r > 2m) or no embeddingis given atall (e.g. Minkowski spacein its
usualcoordinates).In thelatter casethereis no edgeto the space—time,making
it difficult to assesswhereanysingularbehaviourmightoccur.In theformercase
themetricmaylook singularwith respectto theparticularembeddinggiven, but
may not look singularat all with respectto anotherembedding(e.g. Kruskal’s
embeddingfor the Schwarzschildsolution [11]).

Historically therehavebeenseveralapproachesto this problem.Startingwith
the work of G. Szekeres[19], who wasprobably the first to discussthe impor-
tanceofgeodesiccompleteness,the nextdecadesawseveralattemptsto provide
explicit boundaryconstructionsfor space—times.The most importantof these
wereGeroch’sg-boundary[6], thecausalorc-boundaryof Geroch,Kronheimer
andPenrose[8] andSchmidt’sb-boundary[131.Excellentreviewsof the situ-
ation,up till about 1977,canbe foundin refs. [9,17,4,2]. Sincethat time there
hasbeenlittle advancementin this field.

Each of the constructionsmentionedabove,however,suffers from various
problemsandlimitations,perhapstheworstbeingthedifficulty of applyingthem
to specific examples.For instance,the Schmidtconstructioninvolvesstudying
the 20-dimensionalbundleof framesfor the givenmanifold, a dauntingtaskto
saythe least.In thefew caseswhereit hasbeenpossibleto computethe boundary
explicitly (in particularthe two-dimensionalFriedmannmodel) theresultshave
not beenencouragingfrom the physicalpoint of view [1].

Our approachis motivatedby a numberof considerations.Firstly, we want
a definition of “singularity” which canbe usedin a reasonablystraightforward
way on the sortsof examplesthatcommonlyarisein generalrelativity. Secondly,
in theseexamples,oneoften hasan intuitive or physicalfeelingfor the structure
of the singularity in question.For example, the singularity at r = 0 in the
Schwarzschildsolutionseemsto be a spacelikehypersurface,while the studies
of the Curzonsingularity interpret it as beinggeneratedby the world lines of
pointson an infinitely largering [20,15,16].Ouraim is to seeif theseintuitive
notionscan begroundedin a morerigorousmathematicalprocedure.

Thirdly, we feel that too muchhasbeenmadeof the differencesbetweenthe
positivedefinitecase(Riemannian)andthe space—timecase(Lorentzian).The
former, it is true,doeshavea well posedtheoryof singularitiesvia the Cauchy
completion [9,101,but oncethe door is openedto moregeneralmetrics it is
hardto seewhy onewould want to restrictattentionto the caseof Lorentzian
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signature.Indeed,as attentionis focussedalmostexclusivelyon the behaviour
of thegeodesics,thereshouldbe atheoryof singularitieswhich needsnothing
morethanan affine connection.A satisfactorysingularity theory of this kind
could then accommodateother interestingtheoriessuch as Einstein—Cartan,
Kaluza—Klein,Yang—Mills, etc.

Within general relativity many discussionsconcentrateonly on timelike or
causalgeodesics,as thoughspacelikegeodesicswereof no physicalconsequence.
This seemsto be a very shortsightedpoint of view. In two dimensions,for
example,it is purely amatterof interpretationas to whichdimensionistakenas
“space”andwhichas“time”. Also if thecurvaturebecomesinfinite atsomepoint
whichcannotbeapproachedby causalgeodesicsbut whichcanbeapproachedby
spacelikegeodesics(this nearlyhappensin the Reissner—Nordstromsolution),
thensurelythe space—timeshouldnot be called “singularity-free”,sincethereis
an obstructionto continuingcertaingeometricallyimportantcurves.

The key to singularity theory is the conceptof an extensionof a manifold.
Supposeoneis givena “boundarypoint” p of amanifold,arising for example
on the boundaryof acoordinatepatchusedin the presentationofa space—time
(M, g). If M is continuedthroughp by makingit partofalargermanifoldM in
whichp iscoveredby a newcoordinatepatchandthe metricextendsto ametric

on M, thenp is clearly aregularboundarypoint. If no suchextensionexists,
however,a furtherpossibility presentsitself—it may be a “point at infinity”,
unattainableby any geodesicswith finite affine parameter.If neitherof these
conditionsapply,i.e.,p is approachableby geodesicswith finite affineparameter
yet no extensionof M exists throughp, thenwe havewhat we would term a
“singularity”.

This all needsto be mademore precise,but basically singularitiescanbe
thoughtof simply as “failed” boundarypointsof openembeddingsof a space—
time (M, g)—i.e. pointswhich are neitherregular nor pointsat infinity. For
somepeoplethis may seemtoo narrow a concept,since ourboundarypoints
alwaysbelongto openembeddings.Webelievethisto beanadequateconstraint
however.Certainlyregularboundarypointsarealwaysof this typeandso it is
naturalto classifyas “singular” all suchboundarypointswhich are not regular.
In thissensepointsatinfinity arealsosingular,but wewill discardthemasbeing
“infinitely far away”.

Our procedurewill be to provideaseriesof precisedefinitions leadingup to
the conceptof singularity.Many of the termsdefinedwill be appearingfor the
first time or mayhaveappearedearlier in a differentcontext.We havetried to
choosewordswhich areas suggestiveas possibleof theirmeaningandliberally
sprinklethe text with exampleswhich should clarify the needfor the various
stratagemsadoptedin our definitions.Most theoremshaveshort proofs and
areneededonly to proceedto the nextstageof the definitional ladder,leading
eventuallyto the conceptof asingularity.
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While space—timesare clearly our main objective, more general pseudo-
Riemannianmanifolds,or evenmanifoldswith just an affine connectionwill
fall underour scheme.Thus from the outsetwe try to define classesof curves
which are “geodesic-like” on a manifold. This is done in section2. Classesof
curveswhoseparametershavea propertysimilar to thatpossessedby affinely
parametrisedgeodesicswill be said to havethe boundedparameterproperty
(b.p.p.for short). This notion is what will ultimatelybe neededto testwhether
a boundarypoint is “at infinity” or not. Without such a classof curvessin-
gularity theoryhasno meaning,sinceboundarypointscanalwaysbe “sent to
infinity” by an appropriatechangeof parameter.Our schemehoweveris very
generalandpermitsdiscussionof singularitieswith respectto many different
classesof curvessuchas causalgeodesics,smoothcurveswith generalisedaffine
parameter,etc.

Centralto ourdiscussionis the notion of an openembedding,i.e. an embed-
ding q~of a manifoldM in anothermanifoldM of the samedimension.It is
usedso often in this paperthatwe preferto give it the specialnameenvelop-
ment.Section 3 introducestheideaof boundarypointsof an envelopmentand
developsthekey conceptof oneboundarypointcoveringanotherone (thesebe-
longing, in general,to differentenvelopments).Basicallyp coversq if whenever
oneapproachesq (from within M) thenoneapproachesp. In asensethissays
thatq canbethoughtof as beinga“part of” p. Boundarypointsarethensaidto
beequivalentif theymutually covereachother,the equivalenceclassesdefined
by thisrelationbeingcalledabstractboundarypoints.

In section4 the specialcaseof pseudo-Riemannianmanifolds (any signature
metric) is discussed.Thereis nothingin thissectionwhich could not begener-
alisedto manifoldshavingjust an affine connection.The conceptof an exten-
sionof apseudo-Riemannianmanifold and,successively,the conceptsof regular
boundarypoints,pointsat infinity andsingularitiesarediscussed.We definerig-
orouslywhat it meansfor apoint atinfinity or a singularity to beremovableor
essential.The latter conceptis shownto passto the abstractboundary.

In section5 a completeclassificationof boundarypointsand the abstract
boundaryis given, includingall possiblewaysin whichdifferenttypesofbound-
ary pointscancovereachother.

Section6 is devotedto the problemof singularities.In particular,it is clearly
statedwhat it meansfor a pseudo-Riemannianmanifold to be singularity-free.
Severaltheoremsarederived,givingcriteriafor amanifoldto besingularity-free.
Geroch’sandMisner’s problematicexamplesarebothdiscussedandshownto
haveunequivocalinterpretationsin ourscheme.

In section7 wesummarisethesituationandfocuson anumberof unanswered
problemsarisingout of thispaper.

A preliminaryversionof theseideashasbeenpresentedby oneof us (S.M.S.)
[141. Someconceptswerenot optimally developedatthat stageandthe present
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version shouldbe regardedas supersedingthe onegiventhere.It is, however,a
usefulsourceof furtherexamplesto illustrateour techniques.

2. Parametrisedcurves

In thefollowing definitionswewill alwaysassumethatM, )~i,k~,etc. referto
paracompact,connected,Hausdorif,C0o~manifo1dsall havingthe samedimen-
sion n. Unlessspecificallystatedotherwise,it is not assumedin this sectionor
in section3 which follows that the manifoldis endowedwith a metric or affine
connection.

Definition 1. By a(parametrised)curvein amanifoldM we shallmeana C1 map
y I —+ M whereI is a half-openinterval [a, b), a < b < oc, whose tangent
vector~‘ nowherevanisheson thisinterval.Suchacurvewill besaidto startfrom
p = y (a),andthe parameterwill be saidto be boundedif b < oo, unboundedif
b = oo.

Definition 2.A curve y’ : [a’,b’) —~ Mis a subcurveof y ifa <a’ <b’ <band
Y = YI[a’,b’), i.e., y’ is the restrictionof y to a subinterval.If a = a’ andb > b’
thenwe sayy is an extensionof y’.

Definition 3. A changeofparameteris a monotoneincreasingC’ function

5: [a,b) —+ [a’,b’) = I’

such that s(a) = a’,s(b) = b’ andds/dt > 0 for t ~ [a,b). We say the
parametrisedcurvey’ : I’ —~ M is obtainedfrom y by thechangeofparameters
if

Os = y.

Definition 4. Let C be afamily of parametrisedcurvesin M suchthat
(i) for anypoint p E M thereis at least onecurve y of the family passing

throughp,
(ii) if y is a curveof thefamily thenso is everysubcurveof y, and
(iii) for anypair of curvesy andy’ in C which areobtainedfrom eachother

by a changeof parameterwe haveeither that the parameteron both curvesis
boundedor it is unboundedon bothcurves.
Any family C satisfyingconditions (i), (ii) and (iii) will be saidto havethe
boundedparameterproperty (b.p.p.).

Examples5. The following families of curvesall havethe b.p.p.
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(i) Geodesicswith affineparameterin amanifoldM with affine connection.
A changeof parametermusthavethe form s = At + B andthe boundedpa-
rameterpropertyis clearlysatisfied.We denotethisfamily by Cg(M). Theterm
“geodesic”herealwaysrefersto a geodesicarcstartingfrom somepointp eM.

(ii) C’ curveswith generalisedaffineparameter[9] in a manifoldM having
affine connection.This family will bedenotedCgap(M).

(iii) Timelikegeodesicswith propertimeparameterin aLorentzianmanifold
M, denotedCgt(M). If the manifold is time-orientableonecan also talk of
future-directedandpast-directedtimelike geodesics,Cgt+ (M) andCgt_ (M).

Definition 6. We sayp E M is a limit point of a curve y : [a, b) —~ M if there
existsanincreasinginfinite sequenceofrealnumberst

1 —~ b suchthat y (t1) —~ p.

An equivalentstatementof this definition is to say that for every subcurve

= YI[a’,b) of y, wherea<a’ <b, y’ (t) enterseveryopenneighbourhoodU of
p.

Definition 7.We saypis anendpointof the curve y if y(t) —* past —~ b.

ForHausdorifmanifoldsthis impliesthatp is the uniquelimit point of y.

Definition 8. GivenamanifoldM with a familyC of curveshavingtheb.p.p.,we
saythe manifoldM is C-completeif everycurvey E C with boundedparameter
hasan endpointin M.

Ofcoursethisdoesnot guaranteethateverycurveofthefamilyC with bounded
parameterhasanextensionto acurvein C. However,theconverseistrue,sinceby
continuity,everycurvey: [a, b) —~ M which hasan extensiony’: [a, b’) —‘ M
(b’ > b), whereY’I[a,b) = y, clearlyhasp= y’(b) as its endpoint.

In mostpracticalcasessuchasfamiliesof geodesicswith affineparameter,ex-
tendabilityofall curveswith boundedparameterandC-completenessareequiv-
alent.

3. Envelopedmanifolds and boundaries

Definition 9. An envelopedmanifoldis a triple (M, ~, q~)whereM andM are
differentiablemanifolds of the samedimensionn and~ is a C°°embedding

M —p M.

Sincebothmanifoldshavethe samedimensionn, q~(M)is anopensubman-
ifold of M. M is often identified with q~(M)in the naturalway, when there
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Fig. 1. The manifold M lies below the curvey = sin(1 /x) andto the right of the y-axis. Points
of the boundarysetB arenot the endpointsof any curveson M.

is no risk of ambiguity. The envelopedmanifold will alsobe referredto as an
envelopmentofM by M, andM will be calledthe envelopingmanifold.

Definition 10.A boundarypoint p of an envelopment(M, ~, ~) is apoint in
the topologicalboundaryof q~(M), i.e. a point p belongingto 8 (4’ (M)) =

4’(M) — 4’(M) where4’(M) is the closureof 4’(M) in M.

The characteristicfeatureof such a boundarypoint is that everyopenneigh-
bourhoodof it (in M) hasnon-emptyintersectionwith 4’ (M).

Definition 11.A boundarysetB is anon-emptysetof suchboundarypoints (for
afixed envelopment),i.e. anon-emptysubsetof 8(4’ (M)).

Definition 12.We shall saythataparametrisedcurvey : I —~ M approachesthe
boundarysetB if thecurve 4’ o y hasa limit point lying in B.

Example13. It is quite possible to have aboundarypoint which is not the
endpointof any curve in M. For instance,let M be the open submanifold
of R2 definedby {(x,y); y < sin(l/x), x > 0} and let B be the boundary
set {(0,y); —l < y < l}. All points of B are limit pointsof the curvey =

sin(1 /x) — x, x > 0, but noneof thesepointsis the endpointof anycurveon
M (seefig. 1).

Definition 14.If B’ is a boundaryset of asecondenvelopment(M,M’,q5’) of
M thenwe sayB coversB’ if for everyopenneighbourhoodU of B in M there
existsan openneighbourhoodU’ of B’ in M’ suchthat

(1)
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Fig. 2. ThesetB coversthe setB’.

The situationis as depictedin fig. 2. In effect condition (1) saysthat one
cannotget closeto pointsof B’ by a sequenceof pointsfrom within M without
atthesametimeapproachingsomepointof B (seetheorem19 fora moreprecise
statementof this).

If p’ is a boundarypoint of the envelopment(M,M’,4”) we shall say the
boundaryset B covers (respectivelyis coveredby) p’ to meanB covers (is
coveredby) the singletonboundaryset {p’}. Clearly if p is a boundarypoint
lying in the boundaryset B then B coversp. It is also possible,however,for
a singleboundarypoint to cover amuch largerboundaryset, as the following
exampledemonstrates.

Example 15. Let M = li” = 11” — {O} and 4’ = id : M —~ l~ be the trivial

envelopment.Let 4”: M —+ 11” be definedby

= (r+ U (x,,...,x~),

wherer = (~L1x,~)’
12.The origin 0 is a boundarypoint of 4’ andcoversthe

entireboundarysetS’~’(0, 1) [the unit spherecentre0] of 4”.

Theorem 16. A boundarysetB coversa boundaryset B’ if andonly if it covers
everyboundarypointp’ E B’.

Proof The “only if” direction is trivial. To prove the “if” direction supposeB
coverseverypoint p’ E B’. Let U be anyopenneighbourhoodof B in M. For
eachp’ E B’ let U

1~,beanopenneighbourhoodofp’ ink’ suchthat4’o4”’ (U,,fl

4”(M)) c U. The setU’ = U~’EB’U, is clearlyan openneighbourhoodof B’ in
.M~’satisfying(1), henceB coversB’.

It is commonlyof great interestto comparethe approachto two boundary
setsalongcurvesin the manifoldM. In thisregardthe following theoremis very
useful.
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Theorem17. If aboundarysetB coversa boundarysetB’ theneverycurvey in
M which approachesB’ also approachesB.

Proof SupposeB coversB’. Let y: [a, b) —# M beacurvewhichapproachesB’
andlet p’ E B’ bealimit pointof4”oy. Supposey doesnot approachB. Let t1 —~ b
be anincreasinginfinite sequenceof realnumberssuchthat 4” o y (t,) —p p’, and
setA = {4’oy(t~);i ~ ~i}.ThenU = M —Ais anopenneighbourhoodofB and
sinceB coversB’, thereexistsanopenneighbourhoodU’ of B’ in M’ satisfying
condition (1). As U’ is alsoan openneighbourhoodof p’ thereexistsan n such
that 4” o y(t,) eU’ for all i > n. Clearly 4’ o y(t~)= 4’ o o o y(t1) eU
for i> n, which contradictsA flU = 0. Hencey musthavealimit point in B.E

It is worth pointingout that the converseto this theoremdefinitely doesnot
hold. For instance,in example 13 let p = (0,—1/2) andp’ = (0, 1/2). Any
curvein M approachingp’mustalsoapproachp. {p} doesnot cover{p’}, how-
ever,sincethesetwo pointsclearlyhavenon-intersectingopenneighbourhoodsU
andU’ andas 4’ = 4” = id in thisexample,condition (1) reducesto U’ fl M C U
(seefig. 1). Thefollowing is probablythe bestthat can be saidin thisrespect.

Theorem 18. If everycurve in M which approachesa boundarysetB’ also ap-
proachesa boundaryset B, andif everyneighbourhoodofB in M containsan
open neighbourhoodU ofB whosecomplementin 4’ (M) is connected,then B
coversB’.

Proof Supposethatall curvesy in M which approachB’ alsoapproachB, but
assumethat B doesnot coverB’. Thenby theorem16 thereexists a p’ ~ B’
suchthat B doesnot coverp’. Hencethereexists an openneighbourhoodU
of B in M such that for every openneighbourhoodU’ of p’ in M’ the set
4’ o4”~(U’ fl 4” (M)) containspointsnot belongingto U. By ourhypothesisthere
is no lossof generalityin assuming4’ (M) — U to beaconnectedset.Now by
paracompactnesswe canalwaysmakethemanifoldM’ into ametric space(e.g.
by imposingaRiemannianmetricon M’ anddefiningd(x,y) to bethe shortest
distanceforall curvesconnectingxandy).LetU~= {q’ e M’; d(p’, q’) < 1/n}.
Foreachn selectapointPn E 4’ o4”’ (U~fl 4” (M)) suchthatit doesnot lie inU.
Let y be acurveconnectingp, to P2 to p3 to ... andlying entirelyin 4’ (M) — U.
This curvecanclearlybe madeC’ anddoesnot haveany limit points in B. It
certainlydoeshavep’ as alimit point, however,since4” o4r’ (p,,) is asequence
ofpointsapproachingp’. We thereforehaveacontradictionand B mustcover
B’.

Whilst theorems17 and 18 representthe bestwe canachievein termsof ap-
proachesalongparametrisedcurvesin M, a simplerresultholdsif oneonly re-
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quiresapproachesby sequencesof pointsin M. Thefollowing theoremis proved
by methodsessentiallyfollowing thoseof theorems1 7 and18. We thereforeomit
the proof.

Theorem 19. B coversB’ if andonly if for everysequenceP1,P2,...ofpoints in
M such that thesequence4” (p,) has a limit point in B’, the sequence4’ (p1) has
a limit point in B.

Coveringis aweakpartial orderon boundarysets:
(i) B coversB.
(ii) If B coversB’ andB’ coversB” thenB coversB”.

Definition 20.We sayboundarysetsB andB’ areequivalentif B coversB’ and
B’ coversB.

This is clearlyan equivalencerelationon the set of all boundarysets.

Definition 21.An abstractboundarysetis anequivalenceclassof boundarysets,
denoted[B].

The coveringrelationpassesto abstractboundarysetsin the naturalway; we
say [B] covers[B’] if andonly if B coversB’. This relationis clearly indepen-
dentof the choiceof representatives.Forabstractboundarysets,however,the
coveringrelationis atrue partial orderas it satisfiesthe furtherantisymmetric
condition:

(iii) If [B] covers[B’] and [B’] covers[B] then [B] = [B’].
One might be temptedat this stageto define “abstractboundarypoints” as

minimal abstractboundarysets,but anysuchattemptusingan argumentbased
on Zorn’s lemmais doomedto failure. Any single boundarypointp canalways
beblownup to amuchlargerboundarysetin a similar way to example15. This
is doneby defininganewenvelopmentwith thepropertythatdifferentcurvesin
M whichoriginally all hadp astheirendpointsnowapproachseparateendpoints
(e.g.,seeref. [6]). Despitethis problemwe shallmakethe following definition
of an abstractboundarypoint.

Definition 22 (TheAbstractBoundary).For a manifoldM, an abstractbound-
ary setis an abstractboundarypointwheneverit hasa singleton{p} as a repre-
sentativeboundaryset.In this casethe equivalenceclassisdenotedby [p]. The
set of all abstractboundarypointswill be denoted5(M) andcalled the abstract
boundaryor a-boundaryof M.
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It is to bestressedherethattheabstractboundaryisdefinedforeverymanifold
M, irrespectiveof the existenceof furtherstructureon the manifoldsuchas a
metric,affine connectionor chosenfamily C of curves.

It mustbe realised,however,thatanabstractboundarypoint [p1 is no more
“pointlike” thana more generalabstractboundaryset [B]. The equivalence
class[p 1 neednot evenconsistonly of connectedboundarysets.Forexampleif
oneembedsthe openintervalM = (0, 1) in thenaturalway in the realline and
thenembedsit in the unit circle (usingangularcoordinate0) with themap0 =

çb(t) = 2,rt, thenclearlythe single boundarypoint 0 = 0 of the envelopment
(M,S’, 4’) is equivalentto the disconnectedboundaryset { t = 0, t = 1 } of the
first embedding.

It is not hardto showthat everyboundaryset belongingto the equivalence
classof anabstractboundarypoint [p] mustbea compactset,but whetherthis
is a necessaryandsufficient conditionis difficult to resolve.

Forthe remainderof this sectionit will beassumedthata family C of curves
with the b.p.p.hasbeenchosenfor the manifoldM andthiswill be denotedby
(M,C).

Definition 23.If (M,A~,4’)is an envelopmentof (M,C) by M, thenwesaya
boundarypointp of thisenvelopmentis aC-boundarypointor approachableif it
is a limit pointof somecurvefrom the family C (in otherwords,if somecurve
of the family approachesp). Boundarypointswhich arenot C-boundarypoints
will be calledunapproachable.

If aboundarypointp coversanotherboundarypointp’ andp’ isaC-boundary
point, thenit isclearby theorem17 thatsoisp, sinceanycurvewhichapproaches
p’ mustalsoapproachp. This leadsnaturally to the following definition.

Definition 24. Anabstractboundarypoint [p] isanabstractC-boundarypoint,or
simplyapproachable,if p is aC-boundarypoint. Similarly,an abstractboundary
point [p] is unapproachableif p is not a C-boundarypoint.

Thisdefinitionis clearlyindependentof the choiceof representativeboundary
pointp. We denotethesetofabstractC-boundarypointsof M by 5c(M). Note
how propertiessuchas beingapproachableonly haveto be preservedoneway
under covering in order to passto the abstractboundary.For example,the
converseof the statementjust prior to definition 24 is certainly not true—C-
boundarypointsmaycoverunapproachableboundarypoints, as the following
exampledemonstrates.

Example 25. Consider the manifold M = {(x,y) E o~2—oc < x < cx, 0 <
y < oc} with the metric ds2 = y2~2+ dy2 (this is the covering spaceof
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the cone [4], or the Riemannsurfaceof log (z)). We set C = Cg(M), the
family of affinely parametrisedgeodesicson M. Let 4’ : M ~ be thetrivial
envelopmentdefinedby 4’ (x,y) = (x,y). Every boundarypointon y = 0 is a
C-boundarypoint, sinceit is the endpointof a verticalgeodesicx = constant.
Furthermore,thesearethe only geodesicswhich approachthe boundaryy = 0,
sincethegeneralgeodesicis given by y = a sec(x— x0), a > 0, x — x0~< ir/2.
A secondenvelopment4” : M ~ l~definedby

(x’,y’) = 4”(x,y) = (x/y ,~x2 + y2)

againmapsM ontothe region y’ > 0 of ~2 It hasthe effect of spreadingout
the verticalgeodesicsx = a ~ 0 so that theyapproachy’ = a~as x’ —p

Thus on the boundaryy’ = 0 only the origin (0,0) is aC-boundarypoint, all
others(x’ ~ 0,y’ = 0) beingunapproachable.It is alsoeasilyseenthatall these
unapproachableboundarypointsarecoveredby the C-boundarypoint (0,0) of
the original envelopment4’.

4. Pseudo-Riemannianmanifolds

4.1. EXTENSIONS

We now introducea metric on M. In orderto establishconventions,wefirst

give a standarddefinition.

Definition 26.A C” metric g on M is a secondrankcovariantsymmetricand
non-degenerateC” tensorfield on M. Thepair (M, g) is calleda Ck pseudo-
Riemannianmanifold.Wheng is positivedefinite it is calledRiemannian.

Our discussionwill refer to metrics of any signatureunlessspecifically stated
otherwiseAn envelopmentof a pseudo-Riemannianmanifold will be denoted
(M,g,M,4’). The metric (4’_l)*g inducedon the opensubmanifold4’(M) of
M by the C~embedding4’ will alsobedenotedby g whenthereis no risk of
ambiguity.

Definition 27.A C’ extension(1 <1 < k) of a C~’pseudo-Riemannianmanifold
(M, g) is an envelopmentof it by a C’ pseudo-Riemannianmanifold (M, ~)
suchthat

gI~(M)= g,
denoted(M, g, ~, ~, 4’). When 1 = k, we talk simply of (~,~) beingan ex-
tension of (M, g).

We notethatthis definitionof anextensionofapseudo-Riemannianmanifold
(M, g) canbeappliedin apreciselyanalogousmannerto amanifoldM simply



SM. Scott andP. Szekeres/ Theabstract boundary 235

endowedwith a C” affineconnectionV, denoted(M, V). Furthermore,thiswill
alsobetruefor all definitionsto follow. It is importantto keepthisin mind,since
it meansthatour schemecanbe appliedto a wide classof theoriesincluding
conformal,projectiveandgaugetheories.

4.2. REGULAR BOUNDARY POINTS

Definition 28.We sayaboundarypointp of anenvelopment(M, g, M, 4’) is C1
regularforg if thereexistsa C’ pseudo-Riemannianmanifold (X1, ,~)suchthat
çb(M)U {p} C ~i ~ M and~ is ad extensionof (M,g).

Note thatwe requirethe samemapping4’ for the extensionas for the original
envelopment(althoughstrictly speaking,sincethetargetset~i is differentto the
targetsetM of 4’, it shouldbe givenanew name4’ definedby the requirement
that 4’(q) = 4’(q) for all q EM).

A C” regularboundarypoint will simplybe called regular. Although thereis
no seriousloss of generalityin usingthis term (since if I < k we may simply
regard (M, g) as being a C~pseudo-Riemannianmanifold), we shallpersist
in ourterminologybecausethe distinction doesbecomeimportantfor singular
boundarypoints.

Thenotionofregularitycannot,however,betransferredto theabstractbound-
ary as it stands,sinceit is not invariantunderequivalenceof boundarypoints.
Thefollowing simpleexampleclearlydemonstratesthisfact.

Example29. Embedthe one-dimensionalmanifold M = (0,1) with metric
ds2 = ~j~2 into the manifold ~ in two ways:y = 4’(x) = x andz = q5’(x) =

x112.Theboundarypointsy = 0 andz = 0 areclearlyequivalentby ourearlier
definitions,but thefirst is C°0regularwhile the secondis not d regularfor any
1 � 1. This follows becausethemetric inducedby the secondembedding,

ds2 = 4z2dz2

is degenerateat z = 0 andcannotthereforebe extendedto anyopen interval
(—a, 1), wherea > 0. Thus the abstractboundarypoint in questionhasat least
two representativeboundarypoints, oneof which is regular while the otheris
not.

The notionsof an extensionof a pseudo-Riemannianmanifold (M, g) and
aregular boundarypoint of an envelopment(M, g, M, 4’) arebothcompletely
independentof whetheror not afamilyC of curveswith theb.p.p.hasbeencho-
senfor M. Thiswill not be truefor thenotionswhich follow, suchas a“point at
infinity” anda “singularboundarypoint”. Thereforeweshallhenceforthalways
assumethat our pseudo-Riemannianmanifold is endowedwith a family C of
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curveswith the b.p.p.which normally (i.e. unlessotherwisespecified)includes
the family of all geodesicswith affine parameterCg (M). The generalsituation
will be denoted(M, g, C) while the usualnotation (M, g) will be reservedfor
thecasewhereC = Cg(M). An envelopmentof apseudo-Riemannianmanifold
with a family of curvessatisfyingthe b.p.p.will be denoted(M,g,C,M,4’).

The following exampleshowsthat regularboundarypointscanevenbeunap-
proachableby geodesicsin M.

Example30. Let M be the opensubmanifoldof ~2 definedby y > x 1/2,x > 0
andlet g bethe usualflat metric ds2 = ~j~2 + dy2.Theboundarypoint (0,0) is
C~regularsincethe metric extendsto all of ~2, yet it is clearlyunapproachable
by anygeodesics(straightlines) in M.

4.3. POINTSAT INFINITY

The non-regularboundarypoints can be brokenup into two groups,those
whichareC-boundarypoints,alsocalledapproachable,andtherestwhichareun-
approachable.Althoughwehaveseenexamplesofregularboundarypointswhich
are unapproachable(example30), the non-regularunapproachableboundary
pointsdo not seemto merit seriousfurtherdiscussion.This is becausetheyusu-
ally occurwhenweblow up a region of a boundaryby spreadingout afamily of
approachingcurvestoo thinly (e.g.example25).

The approachablenon-regularboundarypointsdo, however,havea veryrich
structure.First onemustaskof themwhetheronecaneffectivelyever“get there”
alonga curve in C with a finite valueof the parameteror not. To this endwe
introducethe conceptof apointat infinity.

Definition 31. Givenan (M, g,C) we will saythata boundarypoint p of the
envelopment(M,g,C,M,q5) is a C’ point at infinity forC if

(i) p is not a C’ regularboundarypoint,
(ii) p is a C-boundarypoint, and
(iii) no curveof C approachesp with boundedparameter.

Condition (iii) saysthat for no interval I = [a, b < oc) is therea curve
y : I —~ M in the family C andan increasinginfinite sequenceof real numbers
{t,} in I suchthat

4’(y(t,))~p as ~

Clearly a C~point at infinity is also a C’” point at infinity for all 1’ > I. In
particular,it is alwaysa Ckpointatinfinity andthereis no reallossofgenerality
in simply calling it apointat infinity.
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Notethatby theboundedparameterproperty,theconceptof apointatinfinity
is independentof the choiceof parametrisationon the curvesfrom C which
approachp. It is herethat the importanceof imposingthe boundedparameter
propertyon C becomesevident.

Condition (i) ensuresthat no boundarypoint is classifiedasboth regularand
apoint atinfinity. Without it, suchboundarypointsdo, in fact, occuras made
clearby the following two examples.

Example32. In example30 let C consistof all thegeodesicsin M supplemented
with the curvesx(t) = l/t2, y(t) = C/t, C > 1, 1 ~ t < oc. The boundary
point (0,0) is still regular (nothing haschangedas regardsthe metric) but it
is “at infinity” for C, sinceit is approachableonly by curveswith unbounded
parameter.

Thisexampleis somewhatartificial, in that the addedcurves,andmorepar-
ticularlythechoiceof theirparametrisation,seemto havenothingto do with the
metric.A rathermoresubtleexampleis thefollowing, in whichthereisa regular
boundarypoint which is geodesicallyapproachable,but only by geodesicswith
unboundedaffine parameter.

Example 33. Let lvi betheunit torus,i.e. D~2/Z2,with the usualflat metricds2 =

+ dy2. Let y bethegeodesicin M generatedby theline x = t, y = t~/~(t �

0) andletp be the point (~-,~). Onthecentral line L = {(x, 1/2); 0< x < l}
choosepoints

i=l,2,3

Foreachi = ±1,±2,...let L bethe closedline segmentof length1/2 andslope
‘,/~centredon thepoint p, andlet L

0 be asimilar line segmentwith centrep.
Now defineM as the opensubmanifoldof M consistingof the complementin
M of this infinite set of closedline segments,

M = ~- ~
iE7L

(seefig. 3). Clearly p is a boundarypoint of the envelopment(M, ~I,idM)
and is C°°regular.Now apartfrom its startingpoint at (0,0), the geodesicy
doesnot passthroughanypoint (x,y) wherex andy areboth rationaland,in
particular,it doesnot passthroughanyof thepointsPj or p on L. It follows that
y lies completelyin M. Furthermore,thereis an increasinginfinite sequence
of positivenumberst,, —p oc such that y (ta) all lie on M n L and such that
y (t0) —* p. Thus y approachesp anddoessowith unboundedaffineparameter.
The sameis true of everygeodesicin M with slope ~‘/~ which doesnot pass
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////~

/ / / / /
/ / / / /

Fig. 3. An exampleof a C~regularboundarypoint which is approachableonly by geodesicsin
M with infinite affine parameter.

throughanyof the pointsPi or p. Moreoverthesearethe only geodesicsin M
which approachp. Thus p is C~regularyet it is like a point at infinity with
respectto geodesicsin M.

The key thing aboutthesetwo examplesis that regularityalwaystakesprece-
denceover being“at infinity”. Thus evenif onecanonly “reach” the boundary
point alongcurvesfrom C havingunboundedparameter,if it is regularthen it
will not be classifiedasapoint atinfinity. Suppose,however,thatin example32

onewere to performa “bad” coordinatetransformation,e.g.,x = x’3,y = y’3.
If the manifoldM is re-embeddedin ~2 with the new coordinatesx’, y’ taken
as rectangular,thentheorigin definitely doesbecomeapoint at infinity, since
conditions (i), (ii) and (iii) of definition 31 arenow all satisfied.This point
atinfinity is, however,in a sense“artificial” or “removable”,since it is covered
by (indeedequivalentto) the original regularboundarypoint at the origin. A
similarbadtransformationcanbe appliedin a neighbourhoodof the boundary
point (~, ~.) of example33, alsoconvertingit into a point atinfinity.

Definition 34.We define a boundarypoint which is a point at infinity to be
removableif it canbecoveredby aboundarysetofanotherembeddingconsisting
entirelyof regularboundarypoints. Whenapoint at infinity is not removable,
it will be calledessential.

In asenseessentialpointsatinfinity areboundarypointswhich really do have
a componentatinfinity (i.e., whichcannotbetransformedaway). Furthermore
the conceptofbeinganessentialpointatinfinity passesto the abstractboundary,
as the following theoremdemonstrates.

Theorem 35. If the boundarypoint p is an essentialpoint at infinity andp is

equivalentto the boundarypointp’, thenp’ is alsoan essentialpoint at infinity.
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Proof Sincep’ coversp, it follows fromtheorem17 thatit mustbeaC-boundary
point (sincep is a C-boundarypoint). p’ cannotbe regular, elsep would be
coveredby aregularboundarypoint, contradictingit beingan essentialpoint at
infinity. Now sincep alsocoversp’, p’ cannotbe the limit point of any curve
in C with boundedparameterelse,by theorem17,p would not be apoint at
infinity. Hencep’ is apoint at infinity. Furthermoreit is an essentialpoint at
infinity for if B is anyboundaryset of regularboundarypointswhich coversp’,
thenby transitivity of the coveringrelationthisboundarysetwouldalsocover
p, againcontradictingits essentialness. LI

It is interestingto note that an essentialpoint at infinity may itself cover
regularboundarypoints.Forexample,if oneisgiven an envelopmentof aman-
ifold whichhasbothanunapproachableregularboundarypointandan essential
point at infinity, thenit is in generalastraightforwardmatterto createa new
envelopmentin which thesetwo pointsare“joined together”to coalesceinto a
singlenewboundarypoint. This newly createdboundarypoint wouldalsobean
essentialpoint at infinity, but would coverthe original regularboundarypoint.

Definition 36.An essential point at infinity which covers a regular boundary
pointwill becalled amixedpoint at infinity. Otherwiseit will betermedapure
point at infinity.

It is easyto seethatboth thesecategoriesareinvariant underboundarypoint
equivalenceandthereforepassto the abstractboundary.

4.4. SINGULAR BOUNDARY POINTS

Definition 37. A boundarypointp of an envelopment(M, g,C, .~I,~) will be
calledC’ singularor a C1singularity if

(i) p is not a d regularboundarypoint,
(ii) p is a C-boundarypoint, and
(iii) thereexistsa curvefromC whichapproachesp with boundedparameter.

Alternatively,onecould sayp is C’ singularif it is aC-boundarypoint whichis
not C’ regularandnot a C~!point atinfinity.

Since a boundarypoint which is not C’ regularis clearlynot C” regularfor
all 1’ � lit follows at oncethat if p is C’ singularthenit is C” singularfor all
I’ > I—in particular,it is alwaysC” singular.In generalwe shallsimplysaythat
p is singularif it is C” singular (i.e., if p is C1 singularfor someI <k).

Example 38. Consider the metric

ds2 = (I +r2~)dr2+r2d02, r>0, 0~0<2ir,
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on the manifoldM = ~2 (seeexample15). This is the metric inducedon the
surfacein E3 obtainedby rotatingthe curvez = r”~’/(n + 1) aboutthe z-axis.
The curvaturescalaris readily shown to be proportionalto r2’~2/(l+ r2h1)2

which —~ oc as r —p 0 for 0 < n < 1. In fact for ~ < n < I one finds that the
boundarypoint r = 0 is C’ regularbut C2 singular. Similarly for N < 2n <

N + I, where n E ~, we havethat r = 0 is CN regularbut CN+~singular.
Theseresultsare easilyseenby consideringM as beingembeddedin ~2 with
theusualpolarinterpretationof the coordinates(r, 0) andthentransformingto
rectangularcoordinates(x,y).

Example39. Considerthe metric

ds2 = dr2 + (r + 1)2d02, 0< r < oc, 0 ~ 0< 2x,

on the manifold M = ~ In this casethe boundarypoint r = 0 is singular
if we usethe naturalpolarembeddingof M in ~ It is worth consideringthis
examplein somedetail sinceat first sight the metric showsno pathological
behaviourat the boundarypoint in question.The coordinates(r, 0) do not,
however,constitutea coordinatepatchfor the manifold~2 in a neighbourhood
of r = 0. It is thereforenecessaryto performa transformationto “rectangular”
coordinatesx = r cos0, y = r sin0, whereuponthe metric becomes

(r+ 1)2 2r+ 1
ds2= 2 (dx2+dy2)— 4 (xdx+ydy)2.

It is easyto see that x = y = 0 is not a regular boundarypoint sinceeach
metric componentbecomesinfinite for almost all directionsof approach.It is
clearlynot a point at infinity sinceit is approachedby geodesicswith bounded
parameter,henceit is asingularity.Let usnow re-embedM in ~2 usingthe 4”
of example 15. Then 4” (M) is the region r > 1 of ~2 andagainusing polar
coordinateson ~2, the inducedmetric on 4” (M) becomesthe standardflat
metric d,s2 = dr2 + r2 do2. This can, of course,be extendedto all of ~2 using
rectangularcoordinates(x,y). Thus the original singularboundarypoint r = 0
is equivalentto the boundarysetS’ (0, 1) which is madeup entirely of C~
regular boundarypoints. Such a singularity will be termed “removable”. We
beginto formalisethe messageof this examplewith the following definition.

Definition 40. A boundary set B will be called C’ non-singularif noneof its
pointsareC’ singular,i.e., if theyareall eitherC~regular,C’ pointsat infinity
or unapproachableboundarypoints. (N.B. As discussedabove,thefirst andlast
categoriesarenot mutually exclusive.)

As in example39 singularboundarypointscan arisewhich areequivalentto
C’ non-singularboundarysets.Suchboundarypointsshould not be classified
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as “truly” or “essentially”singularandwill becalled “removablesingularities”.
Otherexamplesare the one-dimensionalexample29 aboveandthe boundary
points (r = 2m , t = constant)of the Schwarzschild“singularity”, which are
all coveredby the C°°regularboundarypoint (u = 0, v = 0) of the Kruskal—
Szekeresextension[11,19]. A more precisedefinition of this conceptis now
given.

Definition 41.A Ctm singularboundarypoint p will be called Ctm removableif
it canbe coveredby a cm non-singularboundaryset B. Clearly if p is a C”
removablesingularity,thenfor all m’ < m suchthatp is Cm’ singular,it is also
C~’removable.If m = kwe saysimply thatp is aremovablesingularity.

Definition 42.A Ctm singularboundarypointp will be called Ctm essentialif it is
not Ctm removable.If p is C” essentialthenit is C~’essentialfor all m’ � m,
whenceit is alwaysC” essentialandwe candescribep simply as an essential
singularity.

Keepingtrackof all theseordersof differentiability is a tediousbusinessand
from now onwe will simply usethe termsregular,singular,removable,essential,
etc. in mostcases.It isusuallyastraightforwardmatterto discovercorresponding
statementsfor moregeneralordersof differentiability thank. It is worthwhile
keepingin mind the following easily provedtheorem,stating in essencethat
singularitiescanneverbe removed“to infinity”.

Theorem 43. Let p be a removablesingularity and let B be anynon-singular
boundaryset which coversp. Then B containsat least one regular boundary
point.

Proof By definition 37, there is a curve y from C which approachesp with
boundedparameter.SinceB coversp, y mustalsoapproachB (by theorem17).
Let q E B be any limit point of the curve y. q is clearly a C-boundarypoint
andsincethe curvey approachesit with boundedparameter,it is not a pointat
infinity. Henceq mustbe aregularboundarypoint. LI

It is useful to further subclassifyessential singularities and to this end we
providethe following definition.

Definition 44.An essentialsingularity p will be called a mixed or directional
singularity if p coversa boundary point q which is either regular or a point at
infinity. Otherwise,whenp coversno suchboundarypoint, we shall call it a
puresingularity.
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Thesenotionsseemto encapsulateearlier discussionsof “directional singu-
larities” as theyappearin the literature,particularlywith regardto the Curzon
solution [18,5,3]. Possiblythe word “mixed” is betterto usein this context
sincesuchasingularitymight only cover an unapproachableregularboundary
point,which would hardly makethe behaviourdependenton the “directionof
approach”.Neverthelesswe will perseverewith the morestandardterminology
andusuallycall suchsingularitiesdirectional.

Example45. Considerthe metric

ds2 = F2(r)(dr2 + r2d02) , r >0, 0<0< 2ir, F2(r) = I + r”,

definedon the two-dimensionalmanifoldM = ~2 When0 < n < 2 it is seen
that the curvaturescalar

n2r”2

= — (1 + r”)3 oc as r —~ 0,

so that the boundarypoint r = 0 of the naturalembeddingof M in ~2 j~a
C2 singularity (it is clearlynot apoint at infinity). Now transformto elliptical
coordinates(~,~) givenby

x = rcosO = coshijcos~,
y = r sin 0 = sinh ij sin w.

In thesecoordinatesthe metric becomes

= F2(r)(cosh2~—cos2~)(d,i2+ d~2) (0< ~ < oc,0< ~i’ <2~r),

where
r2 = cosh2ij — sin2w.

In thex—y plane,~ = 0 correspondsto the strip — I ~ x ~ 1 of the x-axis. If
wenowperformatransformationto “rectangular”coordinates(X, Y) basedon

(~,w) as “polars”, viz.,

X = i~cosw,Y = ~sinw,

the metricassumestheratherprohibitive form

cLs2 = F2(r) (cosh2P7_~)

+ Y2)dX2+ (ij2Y2 + X2)dY2+ 2XY(,
7

2—l)dXdY],

where _______

r2 = cosh2i~— Y2/,~2, ,j = ~/X2 + Y2.
Nowsupposethatwearepresentedwith thismetric in (X, Y) coordinates,but

without anywords of explanationas to its origin. Taking (X, Y) as rectangular
coordinateson the manifold R2 we wishto classifythe boundarypoint (0,0)
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•
Fig. 4. A directionalsingularity.A curvaturesingularityexistsat theoriginofthe (x,y) coordinate
systemon theleft. Theoriginon theright inducedby theuseofellipticalcoordinatesis adirectional
singularity, as it coversthe wholeline segment[—1,1] of the original x-axis, which consistsof

both a singularboundarypoint andinfinitely manyregularboundarypoints.

of A2 From evaluationof the curvaturescalar,which mustcometo the same
alonga givencurveas in the first embedding,oneseesthatRcu~—f 00 as one
approachesthe origin X = Y = 0 (,~i = 0) alongthe Y-axis. For any other
directionof approachX = aY (a ~ 0), however,Rcu~canbe shownto have
a finite limit (seefig. 4). Typically this is the cue for a directionalsingularity.
The way ourexamplehasbeenconstructedit is astraightforwardmatterto see
how the directionality may be unravelled.The boundarypoint X = Y = 0
is equivalentto the strip —1 < x < 1 of the x-axis (,j = 0) in the original
embedding,which consistsof botha C2 essentiallysingularboundarypointand
infinitely many C2 regularboundarypoints. It follows that the origin of the
secondembeddingis a C2 directionalsingularity.

Thefollowing theoremimplies that the propertyof beingan essentialsingu-
larity passesto the abstractboundary.

Theorem 46. If a boundarypointp ofan envelopment(M, g, C, ~i,4’) coversa
boundarypointp’ ofa secondenvelopment(M, g,C, M’, 4”) which is essentially
singular, thenp is alsoan essentialsingularity.

Proof Theboundarypointp isaC-boundarypointsinceit coverstheC-boundary
point p’. It is neitherregularnor apoint at infinity, elsep’ would be covered
by the non-singularboundaryset {p} andhencewould be removable(i.e. not
essential).Furthermoreit mustbean essentialsingularity,for if it werecovered
by anon-singularboundarysetB, thenB wouldalsocoverp’ by the transitivity
of thecoveringrelation,againcontradictingtheassumptionthatp’ isanessential
singularity. LI

5. Classification of boundary points

Supposethatwe aregiven an envelopment(M, g, C, ~i, 4’) of a C~’pseudo-
Riemannianmanifold (M, g, C) andwishto classifya specificboundarypoint
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p. We proceedby askinga series of questions.Eachquestionis in principle
decidable,thoughwe do not meanto imply by this that the decisionis always
easyto carry out. The questionsto be decidedare:

(1) Isp a C’ regular boundarypointfor somel < k? This is usually a fairly
straightforwardthing to decide.If p is regularthen theremust exist an open
coordinateneighbourhoodU of p in M andametric which extendsg in a C’
mannerfrom its restriction to U n M to all of U. If the answeris YES, we
arefinished,exceptfor possiblyenquiringwhetherp is approachable(i.e. aC-
boundarypoint) or not. This latterquestionis againanswerableby investigating
whetherp is a limit point of somecurvefrom C.

Forconvenience,let usassumefrom nowon that 1 = k (correspondingques-
tionsto be decidedfor differentordersof differentiability areeasily posed).If
the answerto question(1) is NO, thenwe must proceedas follows:

(2) 1spaC-boundarypoint?If NO, thenp is filed awayas an unapproachable
non-regularboundarypoint. Theseare essentiallyuninterestingpoints, though
a furtherinvestigationmight becarriedout to ascertainwhethertheycoverany
(unapproachable)regularboundarypoints. If YES, then we proceedwith the
following questions:

(3) Is therea curvefrom C which approachesp with boundedparameter?If
NO, thenp is a point at infinity, while if YES, thenit is a singularity.
— If p is apoint at infinity weask:

(4) Is p coveredby a boundaryset B ofanotherembeddingconsistingonly
ofregular and/or unapproachableboundarypoints?If YES, then the point at
infinity is called removable,while if NO, thenit is calledessential.In thelatter
casewe proceedto ask:

(5) Doesp cover a regular boundarypoint q ofanotherembedding?If YES,
thenp is amixed pointatinfinity, while if NO, thenit is apurepointatinfinity.
— If p is singularwe ask:

(6) Isp coveredby a non-singularboundarysetB ofanotherembedding?If
YES, then it is a removablesingularity, while if NO, then it is an essential
singularityandwe canaskfurther:

(7) Doesp cover any regular boundarypointsor pointsat infinity of other
embeddings?IfYES, thenit is adirectionalsingularity,while if NO, then it is a
puresingularity.

The wholeclassificationas it emergesfrom this sequenceof questionsis dis-
playedschematicallyin fig. 5. Boxessurroundconceptswhich passto theabstract
boundary.

5.1. COVERINGRELATIONS

Thereareeight principal categoriesof boundarypoints.Thesearethe regular
boundarypoints (approachableandunapproachableregular boundarypoints
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BOUNDARY POINTS

Regular Non-Regular

Approachable Unapproachable

Approachable Unapproachable

Point at Infinity Singnlarity

Removable Essential Removable Essential

Mixed Purel ~recti~~ rpure I
Fig. 5. Schematicclassificationof boundarypoints.Boxes surroundconceptswhich are invariant

underboundarypoint equivalenceandthereforepassto the abstractboundary.

beingregardedas subcategories);non-regularunapproachableboundarypoints;
removable,mixed andpure pointsat infinity; removable,directional (mixed)
andpuresingularities.It is of interestto know which of thesecategoriescan
or cannotcovereachother. In table 1 we put a~ if aboundarypoint of type
correspondingto therow labelcancoveraboundarypoint ofthetypebelonging
to the columnlabel (i.e.,if an explicit exampleof suchacoveringcanbefound),
while we put ax thereif it is impossible.Most of the positionsin thetableare
easyto fill in, althoughspecificexamplesof a coveringwhereit is possiblecan
be alittle tricky to find in somecases.

Thevalueofthetableisthatit allowsusto seeatoncewhichpairsof categories
canor cannothaverepresentativeswhich areequivalentto eachother. This is
particularlyvaluablewhenit comesto analysingthe abstractboundary.
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Table 1
Covering table. A -~,/meansthat a row-labelled boundarypoint can cover a column-labelled
one, x meansthis is impossible.The various labelsare abbreviationsfor regular; non-regular
unapproachable;removable,mixed andpurepoints at infinity; removable,directionalandpure

singularities.
reg. non-reg. rem, mix. pure rem. dir, pure

unapp. cx~ sing. sing. sing.

regular ~,/ ,./ ,,/ x x x

non-reg.unapp. ~ ~/ x x x x x

remov. pt. ~ ~/ ~/ ~./ x x x x x
mixed pt. ~c ../ ..,/ ,/ .../ ~j x x x
purept. x ,,/ ~/ x x x x
remov. sing. ~/ ~/ \/ \/ \/ \/ x
dir. sing. ~,/ ,/ ~ v” ‘/ ~/ \/ \/

puresing. x -.,/ x x ,,/ x

5.2. CLASSIFICATIONOF THE ABSTRACT BOUNDARY

We arenow in apositionto completelyclassifythe abstractboundarypoints.
First of all abstractboundarypoints can be divided into approachable(C-

boundarypoints) and unapproachable.We essentiallydiscard the latter, al-
though there is an interestingsubclassof unapproachableabstractboundary
pointswhich havea regularboundarypoint representative(example30). Fo-
cussingattentionon approachableboundarypoints,we havealreadyseenthat
the classeswhich belongto the essentialcategories,namely mixed and pure
pointsatinfinity anddirectionalandpuresingularities,all passto the abstract
boundary.To seethat thesearethe only categorieswhich passto the abstract
boundaryonemakesuseof table 1.

A categoryC passesto the abstractboundaryif andonly if representative
boundarypointsfrom C canneverbeequivalentto pointsfrom anothercategory
C’. This will betrue if thereis a x in either the CC’ or C’C entry of the table
for every categoryC’ ~ C. It is easily verified that the only categoriesfor
which this holds are thosementionedabove.The remainderwe may simply
term “indeterminate”—thesecompriseabstractboundarypointswhich haveas
membersregularboundarypoints,removablepointsat infinity andremovable
singularities.As aregularboundarypointcanbeequivalenteitherto aremovable
pointatinfinity or to aremovablesingularity (butneverto both) it is not possible
to creategenuinesubcategoriesof the indeterminateabstractboundarypoints.
In view of all this it is reasonableto makethe following definitions.

Definition 47.An abstractboundarypoint will be termedan abstract point at
infinity if it hasa representativeboundarypoint which is an essentialpoint at
infinity.
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ABSTRACT BOUNDARY POINTS

Approachable Unapproachable

Indeterminate
Points at Infinity Singularities

regular

removablepts Mixed Pure Directional Pure
at infinity

removable
singularities

Fig. 6. Classificationschemefor abstractboundarypoints.

Definition 48.An abstractboundarypointwill betermedan abstractsingularity
if it hasa representativeboundarypoint which is an essentialsingularity.

This classificationtogetherwith the furthersubclassificationinto mixed(di-
rectional) andpure classesis depictedin fig. 6. In this waywe seethat every
pseudo-Riemannianmanifold with a classC of curvessatisfyingthe b.p.p.has
awell-definedabstractsingularboundary (consistingof the setof all abstract
singularities)andalso an abstract infinity. This essentiallysolvesthe problem
originally posedby this paper,namelyto constructa boundaryfor an arbitrary
n-dimensionalpseudo-Riemannianmanifold with classC of curvessatisfying
the b.p.p.which representsits singularities.The abstractinfinity, representing
the “boundaryat infinity”, comesas abonus.

6. Singularitiesof pseudo-Riemannianmanifolds

Definition 49.We will say thatapseudo-Riemannianmanifold (M, g, C) with
classC of curvessatisfyingtheb.p.p.hasa C1 singularity if its abstractC’ sin-
gularboundaryis non-empty,i.e., if thereexistsan envelopmentof M having
an essentiallyC’ singularboundarypoint. Conversely,(M, g, C) will be called
C1 singularity-freeif it hasno C1 singularities,i.e., if for everyenvelopmentof
M its boundarypointsareeither d non-singular(C’ regularboundarypoints,
C’ pointsat infinity or unapproachableboundarypoints) or C’ removablesin-
gularities.
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At first sight it might seema dauntingprospectto decidewhethera given
(M, g, C) issingularity-free,as it seemsthatonewouldhaveto investigateevery
possibleenvelopmentof M andcheckwhetherit hasanyessentialsingularities
or not. In practice,however,severalverygeneraltheoremsexistto makethetask
muchsimpler.The two which follow aregenerallyregardedas the sinequa non
of any successfultheoryof singularities[17].

Theorem50. Everycompactpseudo-Riemannianmanifold(M, g) is singularity-
freefor anyfamilyC ofcurveswith the b.p.p.

Proof A compactmanifoldhasno non-trivial envelopments,for anyenveloping
manifoldM would containM as a compactopensubset.But M cannotbeboth
openandclosed,sincethe envelopingmanifoldM is assumedto beconnected.
SinceM hasno envelopments,its abstractboundaryis emptyand,in particular,
cancontainno singularities. LI

TheoremSi. Everypseudo-Riemannianmanifold with afamily C of curvessat-
isfying theb.p.p., (M, g,C), which is C-completeis singularity-free.

Proof Let (M,g,C,~,4’)be any envelopmentof (M,g,C) and letp be any
C-boundarypoint of this envelopment.Let y: [a, b) —* M be somecurvefrom
C havingp as a limit point. Theparameterrange[a, b) cannotbebounded,else
by C-completenessywouldhavean endpointq E M. Sinceendpointsareunique
limit pointsandq ~ p (sincep ~ M), it is clearthat thisyields acontradiction.
Hencep cannotbe a singularity. LI

A ratherstrongerversionof this theoremis availablewhen, as is usuallyre-
quired,C ID Cg(M). It implies thatnot evenunapproachableregularboundary
pointsarepossiblein this case,which wouldstill havebeenpermittedby theo-
rem 51.

Theorem52. If the pseudo-Riemannianmanifold (M, g) is Cg(M )-complete
then it canhaveno regular boundarypoints.

Proof Let (M, g, ~i, 4’) beanyenvelopmentof (M, g) andletp be anybound-
arypoint of thisenvelopment.Ifp isa regularboundarypoint thenit is possible
to find a neighbourhoodU ofp in M on which ametric ~ existswhich extends
g~unM. Thereis no loss of generalityin assumingthatU is a normal neighbour-
hood.Let q � U n M andy : [a,b] —~U be the uniquegeodesicfor the metric
,~connectingq to p. This geodesicclearly intersectsM (since q E .A4) andhas
boundedparameter.On the otherhand, it mustexit M sincep ~ M. Let the
first parametervaluet E (a, b] for which y (t) ~ M bedenotedby c. Clearly the
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geodesicYI[a,c doesnot haveits endpointy(c) in M. ThiscontradictsCg(M)
completeness,whencep cannotberegular. LI

Of courseit is possible for a pseudo-Riemannianmanifold (M, g) to be
Cg(M )-completeandthereforeto besingularity-free,but if thefamily of curves
is extendedto awider classsuch as C = C~P(M),it might no longer be C-
complete.A classicexampleof this kind hasbeengiven by Geroch [7}, where
a space—timeis geodesicallycompletebut has incompletecurvesof bounded
acceleration.

Definition 53.Boundarypointsarisingas limit pointsof curvesfrom the family
C with boundedparameterin aCg(M )-completemanifoldwill bereferredto as
Gerochpoints.

Gerochpointsmustbe singular (as is clear from theorem52). In fact they
mustbe essentiallysingular, elsethey would be coveredby aboundaryset of
anotherembeddingwhich containsatleastoneregularboundarypoint (by the-
orem 43), which is impossibleby theorem52. Thus the existenceof Geroch
points implies that the pseudo-Riemannianmanifold (M, g,C) hasasingular-
ity. Note, however,that if Cg(M )-completenesshadbeentakenas one’sgoal,
then the manifold would be singularity-free.It is thereforeof vital importance
to specifythe family C of curveswhendiscussingthe questionof singularities.

Also with this scheme,geodesicincompletenessdoesnot necessarilyimply
that the particular (M, g,C) in questionhasa singularity.The classicexample
of this is the Taub—NUT space—time[9] or Misner’s simplifiedversion [121,
which we presenthere.

Example54. Let M bethe two-dimensionalmanifold ~x ~ ~, with Lorentzian
metric

ds2 = 2dtd~+td~2,tE~, 0<yj<2ir.

The centralcircle t = 0 and the vertical lines ~v= constantare completenull
geodesics,but thereareothergeodesics(null, timelike andspacelike)which ex-
ecuteinfinite spiralsas they approacht = 0 from eitheraboveor below (see
fig. 7). Thesegeodesicsall approacht = 0 with boundedaffine parameterand
thusareeitherpast-or future-incomplete.Onthe otherhandit is clearthatthere
isno envelopmentof thisspace—timeprovidingboundarypointswhich arelimit
pointsof theseincompletecurves (this is seenmostreadily by compactifying
the spaceinto atorus by identifying t = — ~ with t = + ~, for then no en-
velopmentsexist at all, as was shownin theorem50). Hence this space—time
is singularity-freebut is geodesicallyincomplete.In many sources[17,4] this
space—timeis classifiedas singular. This interpretationseemsto arisein part
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I-i--ii~t=o

Fig. 7. Misner’s example.

becausemorethanoneextensionis possibleacrosst = 0. Thus anextensionof
thelower half-space(t < 0) existsin whichthe spirallinggeodesicsarecomplete,
but the verticalonesbecomeincompletespirals.Undesirableas this sort of be-
haviourmaybephysically,we do not seeit as groundsfor callingthe space—time
singular.Indeed,therecanbeotherreasonsapartfrom singularitiesfor discard-
ing a metric on physicalgrounds—forexample, the existenceof closedcausal
curves.These,incidentally,arealsopresentin the Misner space—time.

7. Conclusions

We have presenteda new definition of singularitieswhich can be applied
equallywell to manifoldsof anydimensionandmetricof anysignature.Thekey
ideahasbeento definethe abstractboundaryor a-boundary13(M) of a manifold
M. This is definablefor anymanifold whatsoeverandincludes,in a sense,all
possibleboundarypointswhichcanarisefrom openembeddingsofthemanifold.
The a-boundaryis constructedentirely from the manifolditself andis therefore
somethingwhicheverymanifoldgetsgratis. Whenthemanifoldisendowedwith
extrastructure,suchas a pseudo-Riemannianmetric or an affine connection,
then the approachableboundarypointscan be classifiedinto threeimportant
categories—regularboundarypoints,pointsatinfinity andsingularities,together
with furthersubcategories.The keyto this classificationis the specificationof a
family of parametrisedcurvesin themanifold satisfyingthe boundedparameter
property. This is a vital ingredient,for differentsuch families will give rise to
differentsingularitystructures.It is usual,however,to insist thatthefamily does
includeall affinely parametrisedgeodesics.

The schemepresentedis, we believe, very robustandpassesmost standard
testsrequiredof a theoryof singularities.Furthermore,it is a practicalscheme,
for when apseudo-Riemannianmanifold such as a space—timeis presented,it
is usuallygiven in a specific coordinatesystem.This often amountsto giving
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an envelopmentof the manifold in question.It is normally thena relatively
straightforwardmatter to classify the boundarypoints (and, by equivalence,
the abstractboundarypointsof which they are representatives)arising from
thisenvelopment.Frequentlytheinformationsoobtainedis sufficientto obtain
an analysisof the a-boundarywhich at least suffices for answeringthe main
questionsaboutthe singularity structureof the particularpseudo-Riemannian
manifold. Someexamplescanbe found in ref. [141 andotherswill be given in
a forthcomingpaper.

One of the greatbenefitsof our schemeis that whena closed region is ex-
cisedfromasingularity-freepseudo-Riemannianmanifold, theresultingpseudo-
Riemannianmanifoldis still singularity-free,sinceonly regularboundarypoints
areintroducedby theexcisionprocess.It wasneverpossibleto makesuchaclaim
with previousschemesbecausegeodesicsalwayshadto be maximally extended
beforethediscussioncouldbegin.Asmaximalextensionsof pseudo-Riemannian
manifoldsarenot easyto find andarenot evenuniquein the analyticcase,we
believethisto be a greatadvantageof ourapproach.

Finally,anumberof questionsremainunansweredin thispaper.In particular,
no mention hasbeenmadeof the topology of the a-boundary,especiallyits
singularpart.This isan importanttopic, whichweproposeto discussin another
paper.It wouldbeof greatinterestto knowhow thea-boundaryandits topology
relatesto the Cauchycompletionin thecaseof aRiemannianmanifold.Another
interestingquestionisthe following: doeseveryessentialsingularitycoverapure
singularity?In otherwords,is therealwaysa “pure core” to the singularpartof
the a-boundary?For any envelopmentof a pseudo-Riemannianmanifold, is
every boundarypoint coverableby aboundaryset of someembedding,all of
whoseboundarypointsareapproachableby geodesics?DoeseverymanifoldM

havean envelopmentsuchthat its closure~XTis compact,i.e., doesM havea
compactification?Obviouslyonecould go on, but despitetheinterestof such
questionsthereis nothingin them to negatethe consistencyandcompleteness
of ourscheme.

A questionofparticularinterestwouldbeto seehowthe a-boundaryrelatesto
otherboundaryconstructionssuchastheb-boundaryorg-boundary.As it stands
it is difficult to seeanyconnection,atleastuntil the furthertopic of topologyon
theboundaryis addressed.Our mainobjectivein thispaperhasbeento answer
the questionwhenis a manifold with affineconnectionand preferredfamily of
curvessingular?The a-boundaryseemsto be a satisfactoryvehiclefor dealing
with this question.The criteria we have arrived at are unambiguousand in
manycasescanbe readily shownto give the expectedanswer(seeref. 1114] for
applicationsto suchexamplesas Schwarzschild,Friedmann,Curzon,etc.).To
explicitly displaythea-boundaryof agiven manifold,however,is not a feasible
propositionin general,sinceit amountsto specifyingeveryinequivalentway
in which the manifold can be embeddedas an open submanifoldof a larger
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manifold. Becauseof the prevalenceof “blow-up” maps,this is clearly not a
practicalthing to do. Somemethodfor cutting down or “sectioning” the a-
boundaryinto manageablesizedportionswill be neededbeforestructuressuch
as topology can be attached.We will presentproceduresfor doing this in a
forthcomingpublication.
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